Is Decentralized AI Safer?
- URL: http://arxiv.org/abs/2211.05828v1
- Date: Fri, 4 Nov 2022 01:01:31 GMT
- Title: Is Decentralized AI Safer?
- Authors: Casey Clifton, Richard Blythman, Kartika Tulusan
- Abstract summary: Various groups are building open AI systems, investigating their risks, and discussing their ethics.
In this paper, we demonstrate how blockchain technology can facilitate and formalize these efforts.
We argue that decentralizing AI can help mitigate AI risks and ethical concerns, while also introducing new issues that should be considered in future work.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) has the potential to significantly benefit or
harm humanity. At present, a few for-profit companies largely control the
development and use of this technology, and therefore determine its outcomes.
In an effort to diversify and democratize work on AI, various groups are
building open AI systems, investigating their risks, and discussing their
ethics. In this paper, we demonstrate how blockchain technology can facilitate
and formalize these efforts. Concretely, we analyze multiple use-cases for
blockchain in AI research and development, including decentralized governance,
the creation of immutable audit trails, and access to more diverse and
representative datasets. We argue that decentralizing AI can help mitigate AI
risks and ethical concerns, while also introducing new issues that should be
considered in future work.
Related papers
- OML: Open, Monetizable, and Loyal AI [39.63122342758896]
We propose OML, which stands for Open, Monetizable, and Loyal AI.
OML is an approach designed to democratize AI development.
Key innovation of our work is introducing a new scientific field: AI-native cryptography.
arXiv Detail & Related papers (2024-11-01T18:46:03Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination [1.4305544869388402]
Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making.
The integration of KGs with neuronal learning is currently a topic of active research.
This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination.
arXiv Detail & Related papers (2023-10-30T12:51:52Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - AI Governance and Ethics Framework for Sustainable AI and Sustainability [0.0]
There are many emerging AI risks for humanity, such as autonomous weapons, automation-spurred job loss, socio-economic inequality, bias caused by data and algorithms, privacy violations and deepfakes.
Social diversity, equity and inclusion are considered key success factors of AI to mitigate risks, create values and drive social justice.
In our journey towards an AI-enabled sustainable future, we need to address AI ethics and governance as a priority.
arXiv Detail & Related papers (2022-09-28T22:23:10Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Rebuilding Trust: Queer in AI Approach to Artificial Intelligence Risk
Management [0.0]
Trustworthy AI has become an important topic because trust in AI systems and their creators has been lost, or was never present in the first place.
We argue that any AI development, deployment, and monitoring framework that aspires to trust must incorporate both feminist, non-exploitative design principles.
arXiv Detail & Related papers (2021-09-21T21:22:58Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
We propose guidelines for evaluating the (moral and) ethical consequences of affectively-aware AI.
We propose a multi-stakeholder analysis framework that separates the ethical responsibilities of AI Developers vis-a-vis the entities that deploy such AI.
We end with recommendations for researchers, developers, operators, as well as regulators and law-makers.
arXiv Detail & Related papers (2021-07-29T03:57:53Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.