AI Governance and Ethics Framework for Sustainable AI and Sustainability
- URL: http://arxiv.org/abs/2210.08984v1
- Date: Wed, 28 Sep 2022 22:23:10 GMT
- Title: AI Governance and Ethics Framework for Sustainable AI and Sustainability
- Authors: Mahendra Samarawickrama
- Abstract summary: There are many emerging AI risks for humanity, such as autonomous weapons, automation-spurred job loss, socio-economic inequality, bias caused by data and algorithms, privacy violations and deepfakes.
Social diversity, equity and inclusion are considered key success factors of AI to mitigate risks, create values and drive social justice.
In our journey towards an AI-enabled sustainable future, we need to address AI ethics and governance as a priority.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI is transforming the existing technology landscape at a rapid phase
enabling data-informed decision making and autonomous decision making. Unlike
any other technology, because of the decision-making ability of AI, ethics and
governance became a key concern. There are many emerging AI risks for humanity,
such as autonomous weapons, automation-spurred job loss, socio-economic
inequality, bias caused by data and algorithms, privacy violations and
deepfakes. Social diversity, equity and inclusion are considered key success
factors of AI to mitigate risks, create values and drive social justice.
Sustainability became a broad and complex topic entangled with AI. Many
organizations (government, corporate, not-for-profits, charities and NGOs) have
diversified strategies driving AI for business optimization and
social-and-environmental justice. Partnerships and collaborations become
important more than ever for equity and inclusion of diversified and
distributed people, data and capabilities. Therefore, in our journey towards an
AI-enabled sustainable future, we need to address AI ethics and governance as a
priority. These AI ethics and governance should be underpinned by human ethics.
Related papers
- Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
The paper highlights the impact AI has in every sector of the US economy and the resultant effect on entities spanning businesses, government, academia, and civil society.
Our discussion explores eleven fundamental 'ethical principles' structured as overarching themes.
These encompass Transparency, Justice, Fairness, Equity, Non- Maleficence, Responsibility, Accountability, Privacy, Beneficence, Freedom, Autonomy, Trust, Dignity, Sustainability, and Solidarity.
arXiv Detail & Related papers (2023-10-09T14:29:00Z) - Artificial Intelligence for Real Sustainability? -- What is Artificial
Intelligence and Can it Help with the Sustainability Transformation? [0.0]
This article briefly explains, classifies, and theorises AI technology.
It then politically contextualises that analysis in light of the sustainability discourse.
It argues that AI can play a small role in moving towards sustainable societies.
arXiv Detail & Related papers (2023-06-15T15:40:00Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
This essay outlines research on AI that learn structures in policy data that can be leveraged for downstream tasks.
We believe this represents the "comprehension" phase of AI and policy, but leveraging policy as a key source of human values to align AI requires "understanding" policy.
arXiv Detail & Related papers (2022-06-25T21:31:14Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Relational Artificial Intelligence [5.5586788751870175]
Even though AI is traditionally associated with rational decision making, understanding and shaping the societal impact of AI in all its facets requires a relational perspective.
A rational approach to AI, where computational algorithms drive decision making independent of human intervention, has shown to result in bias and exclusion.
A relational approach, that focus on the relational nature of things, is needed to deal with the ethical, legal, societal, cultural, and environmental implications of AI.
arXiv Detail & Related papers (2022-02-04T15:29:57Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
Technologists and AI researchers have a responsibility to develop trustworthy AI systems.
To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness.
arXiv Detail & Related papers (2021-01-01T17:34:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.