Dance of SNN and ANN: Solving binding problem by combining spike timing
and reconstructive attention
- URL: http://arxiv.org/abs/2211.06027v1
- Date: Fri, 11 Nov 2022 06:47:54 GMT
- Title: Dance of SNN and ANN: Solving binding problem by combining spike timing
and reconstructive attention
- Authors: Hao Zheng, Hui Lin, Rong Zhao, Luping Shi
- Abstract summary: The binding problem is one of the fundamental challenges that prevent the artificial neural network (ANNs) from a compositional understanding of the world.
We propose a brain-inspired hybrid neural network (HNN) that introduces temporal binding theory originated from neuroscience into ANNs.
- Score: 13.518085470219779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The binding problem is one of the fundamental challenges that prevent the
artificial neural network (ANNs) from a compositional understanding of the
world like human perception, because disentangled and distributed
representations of generative factors can interfere and lead to ambiguity when
complex data with multiple objects are presented. In this paper, we propose a
brain-inspired hybrid neural network (HNN) that introduces temporal binding
theory originated from neuroscience into ANNs by integrating spike timing
dynamics (via spiking neural networks, SNNs) with reconstructive attention (by
ANNs). Spike timing provides an additional dimension for grouping, while
reconstructive feedback coordinates the spikes into temporal coherent states.
Through iterative interaction of ANN and SNN, the model continuously binds
multiple objects at alternative synchronous firing times in the SNN coding
space. The effectiveness of the model is evaluated on synthetic datasets of
binary images. By visualization and analysis, we demonstrate that the binding
is explainable, soft, flexible, and hierarchical. Notably, the model is trained
on single object datasets without explicit supervision on grouping, but
successfully binds multiple objects on test datasets, showing its compositional
generalization capability. Further results show its binding ability in dynamic
situations.
Related papers
- Enhancing SNN-based Spatio-Temporal Learning: A Benchmark Dataset and Cross-Modality Attention Model [30.66645039322337]
High-quality benchmark datasets are great importance to the advances of Artificial Neural Networks (SNNs)
Yet, the SNN-based cross-modal fusion remains underexplored.
In this work, we present a neuromorphic dataset that can better exploit the inherent-temporal betemporal of SNNs.
arXiv Detail & Related papers (2024-10-21T06:59:04Z) - Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
Spiking neural networks (SNNs) are investigated as biologically inspired models of neural computation.
This paper reveals that SNNs, when amalgamated with synaptic delay and temporal coding, are proficient in executing (knowledge) graph reasoning.
arXiv Detail & Related papers (2024-05-27T05:53:30Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks [7.422913384086416]
Spiking Neural Networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal processing capability.
Existing synaptic structures in SNNs are almost full-connections or spatial 2D convolution, neither which can extract temporal dependencies adequately.
We take inspiration from biological synapses and propose a synaptic connection SNN model, to enhance the synapse-temporal receptive fields of synaptic connections.
We show that endowing synaptic models with temporal dependencies can improve the performance of SNNs on classification tasks.
arXiv Detail & Related papers (2022-10-11T08:13:22Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
Biological spiking neurons with intrinsic dynamics underlie the powerful representation and learning capabilities of the brain.
Despite recent tremendous progress in spiking neural networks (SNNs) for handling Euclidean-space tasks, it still remains challenging to exploit SNNs in processing non-Euclidean-space data.
Here we present a general spike-based modeling framework that enables the direct training of SNNs for graph learning.
arXiv Detail & Related papers (2021-06-30T11:20:16Z) - Comparing SNNs and RNNs on Neuromorphic Vision Datasets: Similarities
and Differences [36.82069150045153]
Spiking neural networks (SNNs) and recurrent neural networks (RNNs) are benchmarked on neuromorphic data.
In this work, we make a systematic study to compare SNNs and RNNs on neuromorphic data.
arXiv Detail & Related papers (2020-05-02T10:19:37Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.