STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks
- URL: http://arxiv.org/abs/2210.05241v1
- Date: Tue, 11 Oct 2022 08:13:22 GMT
- Title: STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks
- Authors: Chengting Yu, Zheming Gu, Da Li, Gaoang Wang, Aili Wang and Erping Li
- Abstract summary: Spiking Neural Networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal processing capability.
Existing synaptic structures in SNNs are almost full-connections or spatial 2D convolution, neither which can extract temporal dependencies adequately.
We take inspiration from biological synapses and propose a synaptic connection SNN model, to enhance the synapse-temporal receptive fields of synaptic connections.
We show that endowing synaptic models with temporal dependencies can improve the performance of SNNs on classification tasks.
- Score: 7.422913384086416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs), as one of the algorithmic models in
neuromorphic computing, have gained a great deal of research attention owing to
temporal information processing capability, low power consumption, and high
biological plausibility. The potential to efficiently extract spatio-temporal
features makes it suitable for processing the event streams. However, existing
synaptic structures in SNNs are almost full-connections or spatial 2D
convolution, neither of which can extract temporal dependencies adequately. In
this work, we take inspiration from biological synapses and propose a
spatio-temporal synaptic connection SNN (STSC-SNN) model, to enhance the
spatio-temporal receptive fields of synaptic connections, thereby establishing
temporal dependencies across layers. Concretely, we incorporate temporal
convolution and attention mechanisms to implement synaptic filtering and gating
functions. We show that endowing synaptic models with temporal dependencies can
improve the performance of SNNs on classification tasks. In addition, we
investigate the impact of performance vias varied spatial-temporal receptive
fields and reevaluate the temporal modules in SNNs. Our approach is tested on
neuromorphic datasets, including DVS128 Gesture (gesture recognition), N-MNIST,
CIFAR10-DVS (image classification), and SHD (speech digit recognition). The
results show that the proposed model outperforms the state-of-the-art accuracy
on nearly all datasets.
Related papers
- Enhancing SNN-based Spatio-Temporal Learning: A Benchmark Dataset and Cross-Modality Attention Model [30.66645039322337]
High-quality benchmark datasets are great importance to the advances of Artificial Neural Networks (SNNs)
Yet, the SNN-based cross-modal fusion remains underexplored.
In this work, we present a neuromorphic dataset that can better exploit the inherent-temporal betemporal of SNNs.
arXiv Detail & Related papers (2024-10-21T06:59:04Z) - Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - Spatio-temporal Structure of Excitation and Inhibition Emerges in Spiking Neural Networks with and without Biologically Plausible Constraints [0.06752396542927405]
We present a Spiking Neural Network (SNN) model that incorporates learnable synaptic delays.
We implement a dynamic pruning strategy that combines DEEP R for connection removal and RigL for connection.
We observed that the reintroduction-temporal patterns of excitation and inhibition appeared in the more biologically plausible model as well.
arXiv Detail & Related papers (2024-07-07T11:55:48Z) - Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
Spiking neural networks (SNNs) are investigated as biologically inspired models of neural computation.
This paper reveals that SNNs, when amalgamated with synaptic delay and temporal coding, are proficient in executing (knowledge) graph reasoning.
arXiv Detail & Related papers (2024-05-27T05:53:30Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Ultra-low Latency Spiking Neural Networks with Spatio-Temporal
Compression and Synaptic Convolutional Block [4.081968050250324]
Spiking neural networks (SNNs) have neuro-temporal information capability, low processing feature, and high biological plausibility.
Neuro-MNIST, CIFAR10-S, DVS128 gesture datasets need to aggregate individual events into frames with a higher temporal resolution for event stream classification.
We propose a processing-temporal compression method to aggregate individual events into a few time steps of NIST current to reduce the training and inference latency.
arXiv Detail & Related papers (2022-03-18T15:14:13Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
Biological spiking neurons with intrinsic dynamics underlie the powerful representation and learning capabilities of the brain.
Despite recent tremendous progress in spiking neural networks (SNNs) for handling Euclidean-space tasks, it still remains challenging to exploit SNNs in processing non-Euclidean-space data.
Here we present a general spike-based modeling framework that enables the direct training of SNNs for graph learning.
arXiv Detail & Related papers (2021-06-30T11:20:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal
Learning of Deep Spiking Neural Network [7.503685643036081]
A bio-plausible SNN model with spatial-temporal property is a complex dynamic system.
We formulate SNN as a network of infinite impulse response (IIR) filters with neuron nonlinearity.
We propose a training algorithm that is capable to learn spatial-temporal patterns by searching for the optimal synapse filter kernels and weights.
arXiv Detail & Related papers (2020-02-19T01:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.