論文の概要: SceneFake: An Initial Dataset and Benchmarks for Scene Fake Audio Detection
- arxiv url: http://arxiv.org/abs/2211.06073v2
- Date: Thu, 4 Apr 2024 09:58:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 21:01:43.222106
- Title: SceneFake: An Initial Dataset and Benchmarks for Scene Fake Audio Detection
- Title(参考訳): SceneFake: SceneFakeオーディオ検出の初期データセットとベンチマーク
- Authors: Jiangyan Yi, Chenglong Wang, Jianhua Tao, Chu Yuan Zhang, Cunhang Fan, Zhengkun Tian, Haoxin Ma, Ruibo Fu,
- Abstract要約: 本稿では,シーンフェイク音声検出のためのデータセットSceneFakeを提案する。
操作されたオーディオは、オリジナルオーディオの音響シーンを改ざんするだけで生成される。
本論文では,SceneFakeデータセット上での擬似音声検出ベンチマーク結果について報告する。
- 参考スコア(独自算出の注目度): 54.74467470358476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many datasets have been designed to further the development of fake audio detection. However, fake utterances in previous datasets are mostly generated by altering timbre, prosody, linguistic content or channel noise of original audio. These datasets leave out a scenario, in which the acoustic scene of an original audio is manipulated with a forged one. It will pose a major threat to our society if some people misuse the manipulated audio with malicious purpose. Therefore, this motivates us to fill in the gap. This paper proposes such a dataset for scene fake audio detection named SceneFake, where a manipulated audio is generated by only tampering with the acoustic scene of an real utterance by using speech enhancement technologies. Some scene fake audio detection benchmark results on the SceneFake dataset are reported in this paper. In addition, an analysis of fake attacks with different speech enhancement technologies and signal-to-noise ratios are presented in this paper. The results indicate that scene fake utterances cannot be reliably detected by baseline models trained on the ASVspoof 2019 dataset. Although these models perform well on the SceneFake training set and seen testing set, their performance is poor on the unseen test set. The dataset (https://zenodo.org/record/7663324#.Y_XKMuPYuUk) and benchmark source codes (https://github.com/ADDchallenge/SceneFake) are publicly available.
- Abstract(参考訳): 多くのデータセットは、フェイクオーディオ検出の開発をさらに進めるために設計されている。
しかし、以前のデータセットにおける偽の発話は、主に、音色、韻律、言語内容または元の音声のチャネルノイズを変更することによって生成される。
これらのデータセットは、オリジナルのオーディオの音響シーンを偽造音で操作するシナリオを残している。
悪質な目的で操作されたオーディオを誤用する人もいれば、社会にとって大きな脅威となるでしょう。
したがって、このことはギャップを埋める動機になります。
本稿では,音声強調技術を用いて実発話の音響シーンに触発するだけで,操作された音声を生成できるSceneFakeというシーン偽音声検出用データセットを提案する。
本論文では,SceneFakeデータセット上での擬似音声検出ベンチマーク結果について報告する。
また,異なる音声強調技術と信号対雑音比を用いたフェイク攻撃の解析を行った。
その結果,ASVspoof 2019データセットでトレーニングされたベースラインモデルでは,シーンの偽発話を確実に検出できないことがわかった。
これらのモデルは、SceneFakeのトレーニングセットとテストセットでうまく機能するが、見知らぬテストセットではパフォーマンスが悪い。
データセット(https://zenodo.org/record/7663324#.Y_XKMuPYuUk)とベンチマークソースコード(https://github.com/ADDchallenge/SceneFake)が公開されている。
関連論文リスト
- SafeEar: Content Privacy-Preserving Audio Deepfake Detection [17.859275594843965]
音声コンテンツにアクセスすることなくディープフェイク音声を検知する新しいフレームワークであるSafeEarを提案する。
私たちのキーとなるアイデアは、ニューラルオーディオを、セマンティックおよび音響情報をオーディオサンプルから適切に分離する、新しいデカップリングモデルに組み込むことです。
このようにして、セマンティックな内容が検出器に露出されることはない。
論文 参考訳(メタデータ) (2024-09-14T02:45:09Z) - An RFP dataset for Real, Fake, and Partially fake audio detection [0.36832029288386137]
RFP da-tasetは、部分的フェイク(PF)、雑音を伴う音声、音声変換(VC)、テキスト音声(TTS)、リアルの5つの異なるオーディオタイプから構成される。
その後、データは複数の検出モデルを評価するために使用され、利用可能なモデルは、完全に偽のオーディオではなく、PFオーディオを検出するときに、著しく高い等速誤差率(EER)を発生させる。
論文 参考訳(メタデータ) (2024-04-26T23:00:56Z) - Vulnerability of Automatic Identity Recognition to Audio-Visual
Deepfakes [13.042731289687918]
本稿では, ディープフェイクSWAN-DFの音声・映像データベースとして初めて, 唇と音声をよく同期させる手法を提案する。
我々は,SpeechBrainのECAPA-TDNNモデルなど,アート話者認識システムの脆弱性を実証する。
論文 参考訳(メタデータ) (2023-11-29T14:18:04Z) - AVTENet: Audio-Visual Transformer-based Ensemble Network Exploiting
Multiple Experts for Video Deepfake Detection [53.448283629898214]
近年の超現実的なディープフェイクビデオの普及は、オーディオと視覚の偽造の脅威に注意を向けている。
AI生成のフェイクビデオの検出に関するこれまでのほとんどの研究は、視覚的モダリティまたはオーディオ的モダリティのみを使用していた。
音響操作と視覚操作の両方を考慮したAVTENet(Audio-Visual Transformer-based Ensemble Network)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T19:01:26Z) - Do You Remember? Overcoming Catastrophic Forgetting for Fake Audio
Detection [54.20974251478516]
本稿では,破滅的な忘れを克服するために,偽音声検出のための連続学習アルゴリズムを提案する。
検出ネットワークを微調整する場合,本手法では,真の発話と偽発話の比率に応じて,重み付けの方向を適応的に計算する。
本手法は,音声の感情認識などの関連分野に容易に一般化できる。
論文 参考訳(メタデータ) (2023-08-07T05:05:49Z) - An Initial Investigation for Detecting Vocoder Fingerprints of Fake
Audio [53.134423013599914]
本稿では,偽音声のボコーダ指紋を検出するための新しい問題を提案する。
8つの最先端ボコーダによって合成されたデータセットについて実験を行った。
論文 参考訳(メタデータ) (2022-08-20T09:23:21Z) - Partially Fake Audio Detection by Self-attention-based Fake Span
Discovery [89.21979663248007]
本稿では,部分的に偽の音声を検出する自己認識機構を備えた質問応答(フェイクスパン発見)戦略を導入することで,新たな枠組みを提案する。
ADD 2022の部分的に偽の音声検出トラックで第2位にランクインした。
論文 参考訳(メタデータ) (2022-02-14T13:20:55Z) - Half-Truth: A Partially Fake Audio Detection Dataset [60.08010668752466]
本稿では半真性音声検出(HAD)のためのデータセットを開発する。
HADデータセットの部分的に偽の音声は、発話中の数単語だけを変更する。
我々は、偽のユトランを検知するだけでなく、このデータセットを用いて音声中の操作された領域をローカライズする。
論文 参考訳(メタデータ) (2021-04-08T08:57:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。