GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data
- URL: http://arxiv.org/abs/2211.06302v4
- Date: Sat, 17 Aug 2024 20:16:45 GMT
- Title: GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data
- Authors: Andrei Margeloiu, Nikola Simidjievski, Pietro Lio, Mateja Jamnik,
- Abstract summary: We propose GCondNet to enhance neural networks by leveraging implicit structures present in data.
GCondNet exploits the data's high-dimensionality, and thus improves the performance of an underlying predictor network.
We demonstrate GCondNet's effectiveness on 12 real-world datasets, where it outperforms 14 standard and state-of-the-art methods.
- Score: 14.124731264553889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks often struggle with high-dimensional but small sample-size tabular datasets. One reason is that current weight initialisation methods assume independence between weights, which can be problematic when there are insufficient samples to estimate the model's parameters accurately. In such small data scenarios, leveraging additional structures can improve the model's performance and training stability. To address this, we propose GCondNet, a general approach to enhance neural networks by leveraging implicit structures present in tabular data. We create a graph between samples for each data dimension, and utilise Graph Neural Networks (GNNs) to extract this implicit structure, and for conditioning the parameters of the first layer of an underlying predictor network. By creating many small graphs, GCondNet exploits the data's high-dimensionality, and thus improves the performance of an underlying predictor network. We demonstrate GCondNet's effectiveness on 12 real-world datasets, where it outperforms 14 standard and state-of-the-art methods. The results show that GCondNet is a versatile framework for injecting graph-regularisation into various types of neural networks, including MLPs and tabular Transformers. Code is available at https://github.com/andreimargeloiu/GCondNet.
Related papers
- Ensemble Learning for Graph Neural Networks [28.3650473174488]
Graph Neural Networks (GNNs) have shown success in various fields for learning from graph-structured data.
This paper investigates the application of ensemble learning techniques to improve the performance and robustness of GNNs.
arXiv Detail & Related papers (2023-10-22T03:55:13Z) - Interpretable Graph Neural Networks for Tabular Data [18.30325076881234]
IGNNet constrains the learning algorithm to produce an interpretable model.
A large-scale empirical investigation is presented, showing that IGNNet is performing on par with state-of-the-art machine-learning algorithms.
arXiv Detail & Related papers (2023-08-17T12:35:02Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
This paper provides the first theoretical characterization of joint edge-model sparse learning for graph neural networks (GNNs)
It proves analytically that both sampling important nodes and pruning neurons with the lowest-magnitude can reduce the sample complexity and improve convergence without compromising the test accuracy.
arXiv Detail & Related papers (2023-02-06T16:54:20Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
We propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data.
By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly.
arXiv Detail & Related papers (2021-03-27T04:47:59Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.