Supervised Manifold Learning for Functional Data
- URL: http://arxiv.org/abs/2503.17943v1
- Date: Sun, 23 Mar 2025 05:00:14 GMT
- Title: Supervised Manifold Learning for Functional Data
- Authors: Ruoxu Tan, Yiming Zang,
- Abstract summary: We investigate the topic of classification from the perspective of manifold learning.<n>We propose a novel proximity measure that takes the label information into account to learn the low-dimensional representations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Classification is a core topic in functional data analysis. A large number of functional classifiers have been proposed in the literature, most of which are based on functional principal component analysis or functional regression. In contrast, we investigate this topic from the perspective of manifold learning. It is assumed that functional data lie on an unknown low-dimensional manifold, and we expect that better classifiers can be built upon the manifold structure. To this end, we propose a novel proximity measure that takes the label information into account to learn the low-dimensional representations, also known as the supervised manifold learning outcomes. When the outcomes are coupled with multivariate classifiers, the procedure induces a family of new functional classifiers. In theory, we show that our functional classifier induced by the $k$-NN classifier is asymptotically optimal. In practice, we show that our method, coupled with several classical multivariate classifiers, achieves outstanding classification performance compared to existing functional classifiers in both synthetic and real data examples.
Related papers
- Augmented Functional Random Forests: Classifier Construction and Unbiased Functional Principal Components Importance through Ad-Hoc Conditional Permutations [0.0]
This paper introduces a novel supervised classification strategy that integrates functional data analysis with tree-based methods.
We propose augmented versions of functional classification trees and functional random forests, incorporating a new tool for assessing the importance of functional principal components.
arXiv Detail & Related papers (2024-08-23T15:58:41Z) - Supervised Learning via Ensembles of Diverse Functional Representations: the Functional Voting Classifier [0.0]
This paper aims to show how different functional data representations can be used to train ensemble members and how base model predictions can be combined through majority voting.
The framework presented provides a foundation for voting ensembles with functional data and can stimulate a highly encouraging line of research in the FDA context.
arXiv Detail & Related papers (2024-03-23T09:24:29Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
In this paper, contextual hints are exploited via learning a context-aware classifier.
Our method is model-agnostic and can be easily applied to generic segmentation models.
With only negligible additional parameters and +2% inference time, decent performance gain has been achieved on both small and large models.
arXiv Detail & Related papers (2023-03-21T07:00:35Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
We present a novel approach for novel detection using ensemble classification and evidence theory.
A pool selection strategy is presented to build a solid ensemble classifier.
We use uncertainty for the anomaly detection approach.
arXiv Detail & Related papers (2022-12-23T00:50:41Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - Functional Nonlinear Learning [0.0]
We propose a functional nonlinear learning (FunNoL) method to represent multivariate functional data in a lower-dimensional feature space.
We show that FunNoL provides satisfactory curve classification and reconstruction regardless of data sparsity.
arXiv Detail & Related papers (2022-06-22T23:47:45Z) - Exploring Category-correlated Feature for Few-shot Image Classification [27.13708881431794]
We present a simple yet effective feature rectification method by exploring the category correlation between novel and base classes as the prior knowledge.
The proposed approach consistently obtains considerable performance gains on three widely used benchmarks.
arXiv Detail & Related papers (2021-12-14T08:25:24Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Deep Inverse Feature Learning: A Representation Learning of Error [6.5358895450258325]
This paper introduces a novel perspective about error in machine learning and proposes inverse feature learning (IFL) as a representation learning approach.
Inverse feature learning method operates based on a deep clustering approach to obtain a qualitative form of the representation of error as features.
The experimental results show that the proposed method leads to promising results in classification and especially in clustering.
arXiv Detail & Related papers (2020-03-09T17:45:44Z) - Invariant Feature Coding using Tensor Product Representation [75.62232699377877]
We prove that the group-invariant feature vector contains sufficient discriminative information when learning a linear classifier.
A novel feature model that explicitly consider group action is proposed for principal component analysis and k-means clustering.
arXiv Detail & Related papers (2019-06-05T07:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.