Actionable Recourse via GANs for Mobile Health
- URL: http://arxiv.org/abs/2211.06525v1
- Date: Sat, 12 Nov 2022 00:25:43 GMT
- Title: Actionable Recourse via GANs for Mobile Health
- Authors: Jennifer Chien, Anna Guitart, Ana Fernandez del Rio, Africa Perianez,
Lauren Bellhouse
- Abstract summary: Recourse via counterfactuals provides tangible mechanisms to modify user predictions.
We demonstrate the feasibility of GAN-generated recourse for mobile health applications on ensemble-survival-analysis-based prediction of medium-term engagement in the Safe Delivery App.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile health apps provide a unique means of collecting data that can be used
to deliver adaptive interventions.The predicted outcomes considerably influence
the selection of such interventions. Recourse via counterfactuals provides
tangible mechanisms to modify user predictions. By identifying plausible
actions that increase the likelihood of a desired prediction, stakeholders are
afforded agency over their predictions. Furthermore, recourse mechanisms enable
counterfactual reasoning that can help provide insights into candidates for
causal interventional features. We demonstrate the feasibility of GAN-generated
recourse for mobile health applications on ensemble-survival-analysis-based
prediction of medium-term engagement in the Safe Delivery App, a digital
training tool for skilled birth attendants.
Related papers
- Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.
We show how combining typical risk scores, such as the likelihood of mortality, with future intervention probability scores leads to more interpretable clinical predictions.
arXiv Detail & Related papers (2022-07-06T19:49:42Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Clinical outcome prediction under hypothetical interventions -- a
representation learning framework for counterfactual reasoning [31.97813934144506]
We introduce a new representation learning framework, which considers the provision of counterfactual explanations as an embedded property of the risk model.
Our results suggest that our proposed framework has the potential to help researchers and clinicians improve personalised care.
arXiv Detail & Related papers (2022-05-15T09:41:16Z) - Finding Useful Predictions by Meta-gradient Descent to Improve
Decision-making [1.384055225262046]
We focus on predictions expressed as General Value Functions: temporally extended estimates of the accumulation of a future signal.
One challenge is determining from the infinitely many predictions that the agent could possibly make which might support decision-making.
By learning, rather than manually specifying these predictions, we enable the agent to identify useful predictions in a self-supervised manner.
arXiv Detail & Related papers (2021-11-18T20:17:07Z) - Right Decisions from Wrong Predictions: A Mechanism Design Alternative
to Individual Calibration [107.15813002403905]
Decision makers often need to rely on imperfect probabilistic forecasts.
We propose a compensation mechanism ensuring that the forecasted utility matches the actually accrued utility.
We demonstrate an application showing how passengers could confidently optimize individual travel plans based on flight delay probabilities.
arXiv Detail & Related papers (2020-11-15T08:22:39Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
We carry out user studies to assess how people with differing levels of expertise respond to different types of predictive uncertainty.
We found that showing posterior predictive distributions led to smaller disagreements with the ML model's predictions.
This suggests that posterior predictive distributions can potentially serve as useful decision aids which should be used with caution and take into account the type of distribution and the expertise of the human.
arXiv Detail & Related papers (2020-11-12T02:23:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.