Boosting the interpretability of clinical risk scores with intervention
predictions
- URL: http://arxiv.org/abs/2207.02941v1
- Date: Wed, 6 Jul 2022 19:49:42 GMT
- Title: Boosting the interpretability of clinical risk scores with intervention
predictions
- Authors: Eric Loreaux, Ke Yu, Jonas Kemp, Martin Seneviratne, Christina Chen,
Subhrajit Roy, Ivan Protsyuk, Natalie Harris, Alexander D'Amour, Steve
Yadlowsky, Ming-Jun Chen
- Abstract summary: We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.
We show how combining typical risk scores, such as the likelihood of mortality, with future intervention probability scores leads to more interpretable clinical predictions.
- Score: 59.22442473992704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning systems show significant promise for forecasting patient
adverse events via risk scores. However, these risk scores implicitly encode
assumptions about future interventions that the patient is likely to receive,
based on the intervention policy present in the training data. Without this
important context, predictions from such systems are less interpretable for
clinicians. We propose a joint model of intervention policy and adverse event
risk as a means to explicitly communicate the model's assumptions about future
interventions. We develop such an intervention policy model on MIMIC-III, a
real world de-identified ICU dataset, and discuss some use cases that highlight
the utility of this approach. We show how combining typical risk scores, such
as the likelihood of mortality, with future intervention probability scores
leads to more interpretable clinical predictions.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Ethical considerations of use of hold-out sets in clinical prediction model management [0.4194295877935868]
We focus on the ethical principles of beneficence, non-maleficence, autonomy and justice.
We also discuss statistical issues arising from different hold-out set sampling methods.
arXiv Detail & Related papers (2024-06-05T11:42:46Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs [9.578930989075035]
This paper presents a contrastive learning-based imputation-prediction network for predicting in-hospital mortality risks using EHR data.
Our approach introduces graph analysis-based patient stratification modeling in the imputation process to group similar patients.
Experiments on two real-world EHR datasets show that our approach outperforms the state-of-the-art approaches in both imputation and prediction tasks.
arXiv Detail & Related papers (2023-08-19T03:24:34Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic.
For broad applicability, we focus on the common yet challenging scenario where patient-level data for a region of interest are not available.
We propose an aggregate count explicit-duration hidden Markov model, nicknamed the ACED-HMM, with an interpretable, compact parameterization.
arXiv Detail & Related papers (2021-04-28T15:32:42Z) - Learning to Predict with Supporting Evidence: Applications to Clinical
Risk Prediction [9.199022926064009]
The impact of machine learning models on healthcare will depend on the degree of trust that healthcare professionals place in the predictions made by these models.
We present a method to provide people with clinical expertise with domain-relevant evidence about why a prediction should be trusted.
arXiv Detail & Related papers (2021-03-04T00:26:32Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
This work advances the understanding of uncertainty estimation for classification and risk prediction on medical data.
In a data-scarce field such as healthcare, the ability to measure the uncertainty of a model's prediction could potentially lead to improved effectiveness of decision support tools.
arXiv Detail & Related papers (2020-04-13T08:46:41Z) - Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications [2.446672595462589]
The Intensive Care Unit (ICU) is a hospital department where machine learning has the potential to provide valuable assistance in clinical decision making.
In practice, uncertain predictions should be presented to doctors with extra care in order to prevent potentially catastrophic treatment decisions.
We show how Bayesian modelling and the predictive uncertainty that it provides can be used to mitigate risk of misguided prediction.
arXiv Detail & Related papers (2019-06-20T13:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.