論文の概要: Far Away in the Deep Space: Nearest-Neighbor-Based Dense
Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2211.06660v1
- Date: Sat, 12 Nov 2022 13:32:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 18:06:42.521680
- Title: Far Away in the Deep Space: Nearest-Neighbor-Based Dense
Out-of-Distribution Detection
- Title(参考訳): 深部空間の遠方:最近近傍の近距離分布検出
- Authors: Silvio Galesso, Max Argus, Thomas Brox
- Abstract要約: 我々は、k-Nearest-Neighborsアプローチが、小さな参照データセットとランタイムで驚くほど良い結果が得られることを示した。
究極的には、アプローチは単純で非侵襲的であり、つまり、一次セグメンテーション性能には影響しない。
- 参考スコア(独自算出の注目度): 41.06642911613595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The key to out-of-distribution detection is density estimation of the
in-distribution data or of its feature representations. While good parametric
solutions to this problem exist for well curated classification data, these are
less suitable for complex domains, such as semantic segmentation. In this
paper, we show that a k-Nearest-Neighbors approach can achieve surprisingly
good results with small reference datasets and runtimes, and be robust with
respect to hyperparameters, such as the number of neighbors and the choice of
the support set size. Moreover, we show that it combines well with anomaly
scores from standard parametric approaches, and we find that transformer
features are particularly well suited to detect novel objects in combination
with k-Nearest-Neighbors. Ultimately, the approach is simple and non-invasive,
i.e., it does not affect the primary segmentation performance, avoids training
on examples of anomalies, and achieves state-of-the-art results on the common
benchmarks with +23% and +16% AP improvements on on RoadAnomaly and
StreetHazards respectively.
- Abstract(参考訳): 分布外検出の鍵は、分布内データまたはその特徴表現の密度推定である。
この問題に対する優れたパラメトリック解は、よく計算された分類データには存在するが、セマンティックセグメンテーションのような複雑な領域には適さない。
本稿では、k-nearest-neighborsアプローチが、小さな参照データセットとランタイムで驚くほど良い結果を得ることができ、近隣の数やサポートセットサイズの選択といったハイパーパラメータに関して堅牢であることを示す。
さらに, 標準パラメトリック手法の異常値と組み合わせることで, k-Nearest-Neighborsと組み合わせて新しい物体を検出するのに, トランスフォーマーの特徴が特に適していることを示す。
究極的には、このアプローチは単純かつ非侵襲的であり、すなわち、プライマリセグメンテーションのパフォーマンスに影響せず、異常の例のトレーニングを避け、+23%と+16%の ap 改善をそれぞれ roadanomaly と streethazard で行った共通ベンチマークで最先端の結果を得る。
関連論文リスト
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralADは、意味的、ほぼ分布的、産業的設定で動作するように設計された異常検出フレームワークである。
本稿では,ノイズ付加やシャッフルなどの簡単な操作を施した自己教師付き異常生成モジュールを提案する。
提案手法を10のデータセットに対して広範囲に評価し,6つの実験結果と,残りの6つの実験結果を得た。
論文 参考訳(メタデータ) (2024-07-17T09:27:41Z) - Non-Neighbors Also Matter to Kriging: A New Contrastive-Prototypical
Learning [24.701170582359104]
既存の研究は、隣人の情報が、観測されていない対象の属性を推定する基盤を提供すると仮定している。
本研究では,隣人からの貴重な情報を洗練し,非隣人からの情報を再利用するために,KrigingのためのContrastive-Prototypealの自己教師型学習を提案する。
論文 参考訳(メタデータ) (2024-01-23T11:46:31Z) - Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection [57.646582245834324]
LSDAと呼ばれる簡易で効果的なディープフェイク検出器を提案する。
より多様な偽の表現は、より一般化可能な決定境界を学べるべきである。
提案手法は驚くほど有効であり, 広く使用されている複数のベンチマークで最先端の検出器を超越することを示す。
論文 参考訳(メタデータ) (2023-11-19T09:41:10Z) - Weakly-supervised deepfake localization in diffusion-generated images [4.548755617115687]
本稿では,Xception ネットワークをバックボーンアーキテクチャとして用いた弱教師付きローカライズ問題を提案する。
本研究では,(局所スコアに基づく)最良動作検出法は,データセットやジェネレータのミスマッチよりも,より緩やかな監視に敏感であることを示す。
論文 参考訳(メタデータ) (2023-11-08T10:27:36Z) - Semi-Supervised Building Footprint Generation with Feature and Output
Consistency Training [17.6179873429447]
一貫性トレーニングを備えた最先端の半教師付きセマンティックセマンティクスネットワークは、この問題に対処するのに役立ちます。
ラベルなしサンプルのエンドツーエンドネットワークトレーニングにおいて,特徴と出力の整合性を統合することを提案する。
実験により, 提案手法により, より完全な構造を抽出できることが示唆された。
論文 参考訳(メタデータ) (2022-05-17T14:55:13Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
我々は、この課題を克服する2段階の教師なしアプローチを、強力なピクセルベースの特徴を初めて学習することによって定式化する。
本手法は,いくつかの難解なランドマーク検出データセットにおいて最先端の結果を生成する。
論文 参考訳(メタデータ) (2021-04-07T05:42:11Z) - Pixel-wise Anomaly Detection in Complex Driving Scenes [30.884375526254836]
本稿では,不確実性マップを用いて異常検出を改善する画素方向異常検出フレームワークを提案する。
私たちのアプローチは、すでにトレーニング済みのセグメンテーションネットワークの一般的なフレームワークとして機能します。
さまざまな異常データセットを対象としたトップ2パフォーマンスは、異なる異常インスタンスを扱うアプローチの堅牢性を示している。
論文 参考訳(メタデータ) (2021-03-09T14:26:20Z) - Revisiting Mahalanobis Distance for Transformer-Based Out-of-Domain
Detection [60.88952532574564]
本稿では,ドメイン外インテント検出手法を徹底的に比較する。
意図分類のための3つの標準データセット上で,複数のコンテキストエンコーダとメソッドを効率良く評価する。
本研究の主目的は,超微調整トランスフォーマーを用いたドメイン内データエンコーダが優れた結果をもたらすことである。
論文 参考訳(メタデータ) (2021-01-11T09:10:58Z) - Video Anomaly Detection by Estimating Likelihood of Representations [21.879366166261228]
ビデオ異常は、モーション表現、オブジェクトのローカライゼーション、アクション認識など、多くのサブタスクを解決するため、困難なタスクである。
伝統的に、この課題に対する解決策は、これらの特徴の空間的接続を無視しながら、ビデオフレームとその低次元特徴のマッピングに焦点を当ててきた。
最近のソリューションでは、K-Meansのようなハードクラスタリング技術を用いてこれらの空間的接続を分析することや、潜伏した特徴を一般的な理解にマップするためにニューラルネットワークを適用することに焦点を当てている。
潜在特徴空間における映像異常を解決するために,このタスクを密度推定問題に転送するための深い確率モデルを提案する。
論文 参考訳(メタデータ) (2020-12-02T19:16:22Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
本稿では,クロスドメインオブジェクト検出のための特徴適応手法を提案する。
粗粒度では、アテンション機構を採用して前景領域を抽出し、その辺縁分布に応じて整列する。
粒度の細かい段階では、同じカテゴリのグローバルプロトタイプと異なるドメインとの距離を最小化することにより、前景の条件分布アライメントを行う。
論文 参考訳(メタデータ) (2020-03-23T13:40:06Z) - Self-Guided Adaptation: Progressive Representation Alignment for Domain
Adaptive Object Detection [86.69077525494106]
非教師なしドメイン適応(UDA)は、オブジェクト検出モデルのドメイン間ロバスト性を改善するために前例のない成功を収めた。
既存のUDA手法は、モデル学習中の瞬間的なデータ分布を無視しており、大きなドメインシフトによって特徴表現が劣化する可能性がある。
本稿では、特徴表現の整合とドメイン間のオブジェクト検出モデルの転送を目標とする自己ガイド適応モデルを提案する。
論文 参考訳(メタデータ) (2020-03-19T13:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。