A Survey on Explainable Reinforcement Learning: Concepts, Algorithms,
Challenges
- URL: http://arxiv.org/abs/2211.06665v4
- Date: Wed, 1 Nov 2023 13:46:30 GMT
- Title: A Survey on Explainable Reinforcement Learning: Concepts, Algorithms,
Challenges
- Authors: Yunpeng Qing, Shunyu Liu, Jie Song, Huiqiong Wang, Mingli Song
- Abstract summary: Reinforcement Learning (RL) is a popular machine learning paradigm where intelligent agents interact with the environment to fulfill a long-term goal.
Despite the encouraging results achieved, the deep neural network-based backbone is widely deemed as a black box that impedes practitioners to trust and employ trained agents in realistic scenarios where high security and reliability are essential.
To alleviate this issue, a large volume of literature devoted to shedding light on the inner workings of the intelligent agents has been proposed, by constructing intrinsic interpretability or post-hoc explainability.
- Score: 38.70863329476517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) is a popular machine learning paradigm where
intelligent agents interact with the environment to fulfill a long-term goal.
Driven by the resurgence of deep learning, Deep RL (DRL) has witnessed great
success over a wide spectrum of complex control tasks. Despite the encouraging
results achieved, the deep neural network-based backbone is widely deemed as a
black box that impedes practitioners to trust and employ trained agents in
realistic scenarios where high security and reliability are essential. To
alleviate this issue, a large volume of literature devoted to shedding light on
the inner workings of the intelligent agents has been proposed, by constructing
intrinsic interpretability or post-hoc explainability. In this survey, we
provide a comprehensive review of existing works on eXplainable RL (XRL) and
introduce a new taxonomy where prior works are clearly categorized into
model-explaining, reward-explaining, state-explaining, and task-explaining
methods. We also review and highlight RL methods that conversely leverage human
knowledge to promote learning efficiency and performance of agents while this
kind of method is often ignored in XRL field. Some challenges and opportunities
in XRL are discussed. This survey intends to provide a high-level summarization
of XRL and to motivate future research on more effective XRL solutions.
Corresponding open source codes are collected and categorized at
https://github.com/Plankson/awesome-explainable-reinforcement-learning.
Related papers
- Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
It is argued that the commonly used action matching principle is more like an explanation of deep neural networks (DNNs) than the interpretation of RL agents.
We propose to consider rewards, the essential objective of RL agents, as the essential objective of interpreting RL agents.
We verify and evaluate our method on the Atari 2600 games as well as Duckietown, a challenging self-driving car simulator environment.
arXiv Detail & Related papers (2023-09-04T09:09:54Z) - A User Study on Explainable Online Reinforcement Learning for Adaptive
Systems [0.802904964931021]
Online reinforcement learning (RL) is increasingly used for realizing adaptive systems in the presence of design time uncertainty.
Deep RL gaining interest, the learned knowledge is no longer explicitly represented, but is represented as a neural network.
XRL-DINE provides visual insights into why certain decisions were made at important time points.
arXiv Detail & Related papers (2023-07-09T05:12:42Z) - RACCER: Towards Reachable and Certain Counterfactual Explanations for
Reinforcement Learning [2.0341936392563063]
We propose RACCER, the first-specific approach to generating counterfactual explanations for the behavior of RL agents.
We use a tree search to find the most suitable counterfactuals based on the defined properties.
We evaluate RACCER in two tasks as well as conduct a user study to show that RL-specific counterfactuals help users better understand agents' behavior.
arXiv Detail & Related papers (2023-03-08T09:47:00Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Flexible Attention-Based Multi-Policy Fusion for Efficient Deep
Reinforcement Learning [78.31888150539258]
Reinforcement learning (RL) agents have long sought to approach the efficiency of human learning.
Prior studies in RL have incorporated external knowledge policies to help agents improve sample efficiency.
We present Knowledge-Grounded RL (KGRL), an RL paradigm fusing multiple knowledge policies and aiming for human-like efficiency and flexibility.
arXiv Detail & Related papers (2022-10-07T17:56:57Z) - Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
and Survey [0.7366405857677226]
Reinforcement Learning (RL) methods provide a potential backbone for the cognitive model required for the development of Broad-XAI.
RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems.
This paper aims to introduce a conceptual framework, called the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI.
arXiv Detail & Related papers (2021-08-20T05:18:50Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - The NetHack Learning Environment [79.06395964379107]
We present the NetHack Learning Environment (NLE), a procedurally generated rogue-like environment for Reinforcement Learning research.
We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL.
We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration.
arXiv Detail & Related papers (2020-06-24T14:12:56Z) - Explainable Reinforcement Learning: A Survey [0.0]
Explainable Artificial Intelligence (XAI) has gained increased traction over the last few years.
XAI models exhibit one detrimential characteristic: a performance-transparency trade-off.
This survey attempts to address this gap by offering an overview of Explainable Reinforcement Learning (XRL) methods.
arXiv Detail & Related papers (2020-05-13T10:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.