Superconductor modulation circuits for Qubit control at microwave
frequencies
- URL: http://arxiv.org/abs/2211.06667v2
- Date: Wed, 27 Sep 2023 10:38:04 GMT
- Title: Superconductor modulation circuits for Qubit control at microwave
frequencies
- Authors: Sasan Razmkhah, Ali Bozbey and Pascal Febvre
- Abstract summary: Single Flux Quantum (SFQ) and Adiabatic Quantum Flux Parametron (AQFP) superconductor logic families can reach ultimate performance at cryogenic temperatures.
We have created a superconductor-based on-chip function generator to control qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Readout and control of qubits are limiting factors in scaling quantum
computers. An ideal solution is to integrate energy-efficient cryogenic
circuits close to the qubits to perform control and pre-processing tasks. With
orders of magnitude lower power consumption and hence lower noise, Single Flux
Quantum (SFQ) and Adiabatic Quantum Flux Parametron (AQFP) superconductor logic
families can reach ultimate performance at cryogenic temperatures. We have
created a superconductor-based on-chip function generator to control qubits.
The generated signal is modulated up to tens of GHz based on the external input
waveform applied to the superconductor mixer stage. This circuit works at 4.2K.
A radiofrequency (RF) matching circuit transmits the signal to the ~mK stage
after digital amplification and noise reduction.
Related papers
- In situ Qubit Frequency Tuning Circuit for Scalable Superconducting Quantum Computing: Scheme and Experiment [23.955959205144353]
We propose a scalable scheme to tune the qubit frequency by using in situ superconducting circuit.
Our work paves the way for large-scale control of superconducting quantum processor.
arXiv Detail & Related papers (2024-07-31T08:02:20Z) - A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing [7.742583250368887]
For superconducting quantum processors, microwave signals are delivered to each qubit from room-temperature electronics to the cryogenic environment through coaxial cables.
This architecture is not viable for millions of qubits required for fault-tolerant quantum computing.
Monolithic integration of the control electronics and the qubits provides a promising solution.
We report such a signal source driven by digital-like signals, generating pulsed microwave emission with well-controlled phase, intensity, and frequency directly at millikelvin temperatures.
arXiv Detail & Related papers (2024-07-16T14:33:18Z) - Microwave-multiplexed qubit controller using adiabatic superconductor logic [0.7300072111359807]
Cryogenic qubit controllers (QCs) are the key to build large-scale superconducting quantum processors.
We report on a scalable QC using an ultra-low-power superconductor logic family, namely adiabatic quantum-flux-parametron logic.
The AQFP-mux QC produces multi-tone microwave signals for qubit control with an extremely small power dissipation of 81.8 pW per qubit.
arXiv Detail & Related papers (2023-10-10T11:43:02Z) - Overcoming I/O bottleneck in superconducting quantum computing:
multiplexed qubit control with ultra-low-power, base-temperature cryo-CMOS
multiplexer [40.37334699475035]
Large-scale superconducting quantum computing systems entail high-fidelity control and readout of qubits at millikelvin temperatures.
Cryo-electronics may offer a scalable and versatile solution to overcome this bottleneck.
Here we present an ultra-low power radio-frequency (RF) multiplexing cryo-electronics solution operating below 15 mK.
arXiv Detail & Related papers (2022-09-26T22:38:09Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Moving beyond the transmon: Noise-protected superconducting quantum
circuits [55.49561173538925]
superconducting circuits offer opportunities to store and process quantum information with high fidelity.
Noise-protected devices constitute a new class of qubits in which the computational states are largely decoupled from local noise channels.
This Perspective reviews the theoretical principles at the heart of these new qubits, describes recent experiments, and highlights the potential of robust encoding of quantum information in superconducting qubits.
arXiv Detail & Related papers (2021-06-18T18:00:13Z) - A low-noise on-chip coherent microwave source [0.0]
We report an on-chip device that is based on a Josephson junction coupled to a spiral resonator and is capable of coherent continuous-wave microwave emission.
The infidelity of typical quantum gate operations due to the phase noise of this cryogenic 25-pW microwave source is less than 0.1% up to 10-ms evolution times.
arXiv Detail & Related papers (2021-03-13T04:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.