論文の概要: Inv-SENnet: Invariant Self Expression Network for clustering under
biased data
- arxiv url: http://arxiv.org/abs/2211.06780v1
- Date: Sun, 13 Nov 2022 01:19:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 16:47:44.726442
- Title: Inv-SENnet: Invariant Self Expression Network for clustering under
biased data
- Title(参考訳): Inv-SENnet:バイアスデータによるクラスタリングのための不変自己表現ネットワーク
- Authors: Ashutosh Singh, Ashish Singh, Aria Masoomi, Tales Imbiriba, Erik
Learned-Miller, Deniz Erdogmus
- Abstract要約: 本研究では,各サブ空間におけるデータポイントのクラスタ化を学習しながら,不要な属性(バイアス)を共同で除去する新しいフレームワークを提案する。
合成および実世界のデータセットに対する実験結果から,本手法の有効性が示された。
- 参考スコア(独自算出の注目度): 17.25929452126843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subspace clustering algorithms are used for understanding the cluster
structure that explains the dataset well. These methods are extensively used
for data-exploration tasks in various areas of Natural Sciences. However, most
of these methods fail to handle unwanted biases in datasets. For datasets where
a data sample represents multiple attributes, naively applying any clustering
approach can result in undesired output. To this end, we propose a novel
framework for jointly removing unwanted attributes (biases) while learning to
cluster data points in individual subspaces. Assuming we have information about
the bias, we regularize the clustering method by adversarially learning to
minimize the mutual information between the data and the unwanted attributes.
Our experimental result on synthetic and real-world datasets demonstrate the
effectiveness of our approach.
- Abstract(参考訳): サブスペースクラスタリングアルゴリズムは、データセットをうまく説明するクラスタ構造を理解するために使用される。
これらの手法は自然科学の様々な分野のデータ探索に広く用いられている。
しかし、これらの手法のほとんどはデータセットの望ましくないバイアスを処理できない。
データサンプルが複数の属性を表すデータセットの場合、いかなるクラスタリングアプローチも望ましくない出力をもたらす可能性がある。
そこで本稿では,各サブ空間におけるデータポイントのクラスタ化を学習しながら,不要な属性(バイアス)を共同で除去するフレームワークを提案する。
バイアスに関する情報が得られれば,データと不要な属性間の相互情報を最小化するために,逆学習によってクラスタリング手法を規則化する。
合成および実世界のデータセットに対する実験結果から,本手法の有効性が示された。
関連論文リスト
- DMS: Differentiable Mean Shift for Dataset Agnostic Task Specific
Clustering Using Side Information [0.0]
我々は、サイド情報から直接データをクラスタリングすることを学ぶ新しいアプローチを提案する。
クラスタの数、その中心、あるいは類似性に関するあらゆる種類の距離メートル法を知る必要はありません。
本手法は,特定のタスクのニーズに応じて,同じデータポイントを様々な方法で分割することができる。
論文 参考訳(メタデータ) (2023-05-29T13:45:49Z) - ClusterNet: A Perception-Based Clustering Model for Scattered Data [16.326062082938215]
クラスタ分離は、一般的に広く使用されているクラスタリング技術によって取り組まれるタスクである。
本稿では,分散データを直接操作する学習戦略を提案する。
私たちは、ポイントベースのディープラーニングモデルであるClusterNetをトレーニングし、クラスタ分離性に対する人間の認識を反映するように訓練します。
論文 参考訳(メタデータ) (2023-04-27T13:41:12Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Clustering Optimisation Method for Highly Connected Biological Data [0.0]
接続クラスタリング評価のための単純な指標が,生物データの最適セグメンテーションにつながることを示す。
この作業の斬新さは、混雑したデータをクラスタリングするための単純な最適化方法の作成にある。
論文 参考訳(メタデータ) (2022-08-08T17:33:32Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
異なるプライベートクラスタリングでは、個々のデータポイントに関する情報を公開せずに、$k$のクラスタセンターを特定することが目標だ。
我々は、データが"簡単"である場合にユーティリティを提供する実装可能な差分プライベートクラスタリングアルゴリズムを提供する。
我々は、非プライベートクラスタリングアルゴリズムを簡単なインスタンスに適用し、結果をプライベートに組み合わせることのできるフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-29T08:13:56Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
我々は異常クラスタリングを導入し、その目標はデータを異常型の一貫性のあるクラスタにまとめることである。
これは異常検出とは違い、その目標は異常を通常のデータから分割することである。
パッチベースの事前訓練されたディープ埋め込みとオフザシェルフクラスタリング手法を用いた,単純で効果的なクラスタリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-21T23:11:33Z) - Clustering Plotted Data by Image Segmentation [12.443102864446223]
クラスタリングアルゴリズムは、ラベルなしデータのパターンを検出する主要な分析手法の1つである。
本稿では,人間のクラスタリングデータに着想を得た,2次元空間におけるクラスタリングポイントの全く異なる方法を提案する。
私たちのアプローチであるVisual Clusteringは、従来のクラスタリングアルゴリズムよりもいくつかのアドバンテージを持っています。
論文 参考訳(メタデータ) (2021-10-06T06:19:30Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDECは、共同統計表現学習とクラスタリングのための教師なしのフレームワークである。
実験により,これらの表現を用いることで,様々な画像データセットにまたがる不均衡な画像クラスタリングの結果を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2021-09-11T09:26:52Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Decorrelated Clustering with Data Selection Bias [55.91842043124102]
本稿では,データ選択バイアスを伴うクラスタリングのためのデコリレーション正規化K-Meansアルゴリズム(DCKM)を提案する。
DCKMアルゴリズムは,選択バイアスによって生じる予期せぬ特徴相関を除去する必要があることを示す。
論文 参考訳(メタデータ) (2020-06-29T08:55:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。