Inv-SENnet: Invariant Self Expression Network for clustering under
biased data
- URL: http://arxiv.org/abs/2211.06780v1
- Date: Sun, 13 Nov 2022 01:19:06 GMT
- Title: Inv-SENnet: Invariant Self Expression Network for clustering under
biased data
- Authors: Ashutosh Singh, Ashish Singh, Aria Masoomi, Tales Imbiriba, Erik
Learned-Miller, Deniz Erdogmus
- Abstract summary: We propose a novel framework for jointly removing unwanted attributes (biases) while learning to cluster data points in individual subspaces.
Our experimental result on synthetic and real-world datasets demonstrate the effectiveness of our approach.
- Score: 17.25929452126843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subspace clustering algorithms are used for understanding the cluster
structure that explains the dataset well. These methods are extensively used
for data-exploration tasks in various areas of Natural Sciences. However, most
of these methods fail to handle unwanted biases in datasets. For datasets where
a data sample represents multiple attributes, naively applying any clustering
approach can result in undesired output. To this end, we propose a novel
framework for jointly removing unwanted attributes (biases) while learning to
cluster data points in individual subspaces. Assuming we have information about
the bias, we regularize the clustering method by adversarially learning to
minimize the mutual information between the data and the unwanted attributes.
Our experimental result on synthetic and real-world datasets demonstrate the
effectiveness of our approach.
Related papers
- DMS: Differentiable Mean Shift for Dataset Agnostic Task Specific
Clustering Using Side Information [0.0]
We present a novel approach, in which we learn to cluster data directly from side information.
We do not need to know the number of clusters, their centers or any kind of distance metric for similarity.
Our method is able to divide the same data points in various ways dependant on the needs of a specific task.
arXiv Detail & Related papers (2023-05-29T13:45:49Z) - ClusterNet: A Perception-Based Clustering Model for Scattered Data [16.326062082938215]
Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques.
We propose a learning strategy which directly operates on scattered data.
We train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster separability.
arXiv Detail & Related papers (2023-04-27T13:41:12Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Clustering Optimisation Method for Highly Connected Biological Data [0.0]
We show how a simple metric for connectivity clustering evaluation leads to an optimised segmentation of biological data.
The novelty of the work resides in the creation of a simple optimisation method for clustering crowded data.
arXiv Detail & Related papers (2022-08-08T17:33:32Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
In differentially private clustering, the goal is to identify $k$ cluster centers without disclosing information on individual data points.
We provide implementable differentially private clustering algorithms that provide utility when the data is "easy"
We propose a framework that allows us to apply non-private clustering algorithms to the easy instances and privately combine the results.
arXiv Detail & Related papers (2021-12-29T08:13:56Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
We introduce anomaly clustering, whose goal is to group data into coherent clusters of anomaly types.
This is different from anomaly detection, whose goal is to divide anomalies from normal data.
We present a simple yet effective clustering framework using a patch-based pretrained deep embeddings and off-the-shelf clustering methods.
arXiv Detail & Related papers (2021-12-21T23:11:33Z) - Clustering Plotted Data by Image Segmentation [12.443102864446223]
Clustering algorithms are one of the main analytical methods to detect patterns in unlabeled data.
In this paper, we present a wholly different way of clustering points in 2-dimensional space, inspired by how humans cluster data.
Our approach, Visual Clustering, has several advantages over traditional clustering algorithms.
arXiv Detail & Related papers (2021-10-06T06:19:30Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDEC is an unsupervised framework for joint statistical representation learning and clustering.
Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets.
arXiv Detail & Related papers (2021-09-11T09:26:52Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Decorrelated Clustering with Data Selection Bias [55.91842043124102]
We propose a novel Decorrelation regularized K-Means algorithm (DCKM) for clustering with data selection bias.
Our DCKM algorithm achieves significant performance gains, indicating the necessity of removing unexpected feature correlations induced by selection bias.
arXiv Detail & Related papers (2020-06-29T08:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.