ClusterNet: A Perception-Based Clustering Model for Scattered Data
- URL: http://arxiv.org/abs/2304.14185v3
- Date: Wed, 6 Mar 2024 07:41:06 GMT
- Title: ClusterNet: A Perception-Based Clustering Model for Scattered Data
- Authors: Sebastian Hartwig, Christian van Onzenoodt, Dominik Engel, Pedro
Hermosilla, Timo Ropinski
- Abstract summary: Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques.
We propose a learning strategy which directly operates on scattered data.
We train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster separability.
- Score: 16.326062082938215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visualizations for scattered data are used to make users understand certain
attributes of their data by solving different tasks, e.g. correlation
estimation, outlier detection, cluster separation. In this paper, we focus on
the later task, and develop a technique that is aligned to human perception,
that can be used to understand how human subjects perceive clusterings in
scattered data and possibly optimize for better understanding. Cluster
separation in scatterplots is a task that is typically tackled by widely used
clustering techniques, such as for instance k-means or DBSCAN. However, as
these algorithms are based on non-perceptual metrics, we can show in our
experiments, that their output do not reflect human cluster perception. We
propose a learning strategy which directly operates on scattered data. To learn
perceptual cluster separation on this data, we crowdsourced a large scale
dataset, consisting of 7,320 point-wise cluster affiliations for bivariate
data, which has been labeled by 384 human crowd workers. Based on this data, we
were able to train ClusterNet, a point-based deep learning model, trained to
reflect human perception of cluster separability. In order to train ClusterNet
on human annotated data, we use a PointNet++ architecture enabling inference on
point clouds directly. In this work, we provide details on how we collected our
dataset, report statistics of the resulting annotations, and investigate
perceptual agreement of cluster separation for real-world data. We further
report the training and evaluation protocol of ClusterNet and introduce a novel
metric, that measures the accuracy between a clustering technique and a group
of human annotators. Finally, we compare our approach against existing
state-of-the-art clustering techniques and can show, that ClusterNet is able to
generalize to unseen and out of scope data.
Related papers
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Interpretable Deep Clustering for Tabular Data [7.972599673048582]
Clustering is a fundamental learning task widely used in data analysis.
We propose a new deep-learning framework that predicts interpretable cluster assignments at the instance and cluster levels.
We show that the proposed method can reliably predict cluster assignments in biological, text, image, and physics datasets.
arXiv Detail & Related papers (2023-06-07T21:08:09Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Clustering Plotted Data by Image Segmentation [12.443102864446223]
Clustering algorithms are one of the main analytical methods to detect patterns in unlabeled data.
In this paper, we present a wholly different way of clustering points in 2-dimensional space, inspired by how humans cluster data.
Our approach, Visual Clustering, has several advantages over traditional clustering algorithms.
arXiv Detail & Related papers (2021-10-06T06:19:30Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDEC is an unsupervised framework for joint statistical representation learning and clustering.
Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets.
arXiv Detail & Related papers (2021-09-11T09:26:52Z) - Integrating Auxiliary Information in Self-supervised Learning [94.11964997622435]
We first observe that the auxiliary information may bring us useful information about data structures.
We present to construct data clusters according to the auxiliary information.
We show that Cl-InfoNCE may be a better approach to leverage the data clustering information.
arXiv Detail & Related papers (2021-06-05T11:01:15Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Unsupervised Visual Representation Learning by Online Constrained
K-Means [44.38989920488318]
Cluster discrimination is an effective pretext task for unsupervised representation learning.
We propose a novel clustering-based pretext task with online textbfConstrained textbfK-mtextbfeans (textbfCoKe)
Our online assignment method has a theoretical guarantee to approach the global optimum.
arXiv Detail & Related papers (2021-05-24T20:38:32Z) - Dynamic Clustering in Federated Learning [15.37652170495055]
We propose a three-phased data clustering algorithm, namely: generative adversarial network-based clustering, cluster calibration, and cluster division.
Our algorithm improves the performance of forecasting models, including cellular network handover, by 43%.
arXiv Detail & Related papers (2020-12-07T15:30:07Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
We present LSD-C, a novel method to identify clusters in an unlabeled dataset.
Our method draws inspiration from recent semi-supervised learning practice and proposes to combine our clustering algorithm with self-supervised pretraining and strong data augmentation.
We show that our approach significantly outperforms competitors on popular public image benchmarks including CIFAR 10/100, STL 10 and MNIST, as well as the document classification dataset Reuters 10K.
arXiv Detail & Related papers (2020-06-17T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.