論文の概要: Adversarial and Random Transformations for Robust Domain Adaptation and
Generalization
- arxiv url: http://arxiv.org/abs/2211.06788v1
- Date: Sun, 13 Nov 2022 02:10:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 16:47:25.353988
- Title: Adversarial and Random Transformations for Robust Domain Adaptation and
Generalization
- Title(参考訳): ロバストな領域適応と一般化のための逆およびランダム変換
- Authors: Liang Xiao, Jiaolong Xu, Dawei Zhao, Erke Shang, Qi Zhu, Bin Dai
- Abstract要約: ランダムデータ拡張による整合性トレーニングを単純に適用することで、ドメイン適応(DA)と一般化(DG)の最先端結果が得られることを示す。
逆変換とランダム変換を組み合わせた手法は、複数のDAおよびDGベンチマークデータセット上で最先端の手法より優れている。
- 参考スコア(独自算出の注目度): 9.995765847080596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation has been widely used to improve generalization in training
deep neural networks. Recent works show that using worst-case transformations
or adversarial augmentation strategies can significantly improve the accuracy
and robustness. However, due to the non-differentiable properties of image
transformations, searching algorithms such as reinforcement learning or
evolution strategy have to be applied, which are not computationally practical
for large scale problems. In this work, we show that by simply applying
consistency training with random data augmentation, state-of-the-art results on
domain adaptation (DA) and generalization (DG) can be obtained. To further
improve the accuracy and robustness with adversarial examples, we propose a
differentiable adversarial data augmentation method based on spatial
transformer networks (STN). The combined adversarial and random transformations
based method outperforms the state-of-the-art on multiple DA and DG benchmark
datasets. Besides, the proposed method shows desirable robustness to
corruption, which is also validated on commonly used datasets.
- Abstract(参考訳): データ拡張はディープニューラルネットワークのトレーニングの一般化を改善するために広く使われている。
最近の研究は、最悪のケース変換や敵の強化戦略を用いることで、精度と堅牢性を大幅に向上できることを示している。
しかし、画像変換の非微分性のため、強化学習や進化戦略のような探索アルゴリズムを適用する必要があり、大規模な問題に対して計算的に実用的ではない。
本研究では、ランダムデータ拡張による整合性トレーニングを単純に適用することで、ドメイン適応(DA)と一般化(DG)に関する最先端結果が得られることを示す。
本研究では, 空間変換器ネットワーク(STN)をベースとした, 識別可能な逆データ拡張手法を提案する。
逆変換とランダム変換を組み合わせた手法は、複数のDAおよびDGベンチマークデータセット上で最先端の手法より優れている。
さらに, 提案手法は, 一般的に使用されているデータセット上でも検証可能な, 汚損に対する望ましい堅牢性を示す。
関連論文リスト
- GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
GAN(Generative Adversarial Networks)のような逆生成モデルは、様々な種類のデータを生成するために広く応用されている。
本研究では, GE-AdvGAN という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-11T16:43:16Z) - AdvST: Revisiting Data Augmentations for Single Domain Generalization [39.55487584183931]
単一ドメインの一般化は、単一のソースドメインのデータを使用して、未知のターゲットドメインシフトに対して堅牢なモデルをトレーニングすることを目的としている。
セマンティクス変換としての学習可能なパラメータによる標準的なデータ拡張は、サンプルの特定のセマンティクスを操作できる。
本稿では,セマンティックス変換を用いたAdversarial Learning(AdvST)を提案する。
論文 参考訳(メタデータ) (2023-12-20T02:29:31Z) - Incorporating Supervised Domain Generalization into Data Augmentation [4.14360329494344]
本稿では,データ拡張の堅牢性と訓練効率を向上させるために,コントラッシブ・セマンティック・アライメント(CSA)ロス法を提案する。
CIFAR-100とCUBデータセットの実験により、提案手法は典型的なデータ拡張の堅牢性とトレーニング効率を向上させることが示された。
論文 参考訳(メタデータ) (2023-10-02T09:20:12Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Single Domain Generalization via Normalised Cross-correlation Based
Convolutions [14.306250516592304]
単一ドメインの一般化は、単一のソースからのデータを使用して堅牢なモデルをトレーニングすることを目的としている。
本稿では、重みと入力特徴パッチの間の正規化相互相関を計算するXCNormという演算子を提案する。
この演算子で構成されるディープニューラルネットワークは、一般的な意味分布シフトに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2023-07-12T04:15:36Z) - Improving Diversity with Adversarially Learned Transformations for
Domain Generalization [81.26960899663601]
本稿では、ニューラルネットワークを用いた逆学習変換(ALT)を用いて、可塑性かつハードな画像変換をモデル化する新しいフレームワークを提案する。
我々は、ALTが既存の多様性モジュールと自然に連携して、ソースドメインの大規模変換によって最先端のパフォーマンスを実現することを示す。
論文 参考訳(メタデータ) (2022-06-15T18:05:24Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
機械学習モデルの根本的な課題は、アウト・オブ・ディストリビューション(OOD)データへの一般化である。
私たちはまず、DEC(Disentanglement-Constrained Domain Generalization)と呼ばれる制約付き最適化としてOOD一般化問題を定式化する。
この変換に基づいて、結合表現の不絡合と領域一般化のための原始双対アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-27T07:36:32Z) - Exploring Data Aggregation and Transformations to Generalize across
Visual Domains [0.0]
この論文は、ドメイン一般化(DG)、ドメイン適応(DA)およびそれらのバリエーションの研究に寄与する。
本稿では,機能集約戦略と視覚変換を利用するドメイン一般化とドメイン適応の新しいフレームワークを提案する。
提案手法が確立したDGおよびDAベンチマークにおいて,最先端の競争的アプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-20T14:58:14Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。