論文の概要: Mining Unseen Classes via Regional Objectness: A Simple Baseline for
Incremental Segmentation
- arxiv url: http://arxiv.org/abs/2211.06866v2
- Date: Tue, 15 Nov 2022 08:05:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 12:46:55.728315
- Title: Mining Unseen Classes via Regional Objectness: A Simple Baseline for
Incremental Segmentation
- Title(参考訳): 地域目的による未確認授業のマイニング:インクリメンタルセグメンテーションのためのシンプルなベースライン
- Authors: Zekang Zhang, Guangyu Gao, Zhiyuan Fang, Jianbo Jiao, Yunchao Wei
- Abstract要約: 画像分類タスクにおいて、破滅的な忘れを緩和するために、増分的あるいは連続的な学習が広く研究されている。
本稿では,マイニングのための地域目的性(MicroSeg)を通した未確認クラスという,シンプルで効果的な手法を提案する。
われわれのMicroSegは、強い客観性を持つ背景領域が、歴史的または将来の段階においてそれらの概念に属するという仮定に基づいている。
このように、特徴空間における古い概念を特徴付ける分布は、背景シフトによる破滅的な忘れを軽減し、よりよく認識される。
- 参考スコア(独自算出の注目度): 57.80416375466496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incremental or continual learning has been extensively studied for image
classification tasks to alleviate catastrophic forgetting, a phenomenon that
earlier learned knowledge is forgotten when learning new concepts. For class
incremental semantic segmentation, such a phenomenon often becomes much worse
due to the background shift, i.e., some concepts learned at previous stages are
assigned to the background class at the current training stage, therefore,
significantly reducing the performance of these old concepts. To address this
issue, we propose a simple yet effective method in this paper, named Mining
unseen Classes via Regional Objectness for Segmentation (MicroSeg). Our
MicroSeg is based on the assumption that background regions with strong
objectness possibly belong to those concepts in the historical or future
stages. Therefore, to avoid forgetting old knowledge at the current training
stage, our MicroSeg first splits the given image into hundreds of segment
proposals with a proposal generator. Those segment proposals with strong
objectness from the background are then clustered and assigned newly-defined
labels during the optimization. In this way, the distribution characterizes of
old concepts in the feature space could be better perceived, relieving the
catastrophic forgetting caused by the background shift accordingly. Extensive
experiments on Pascal VOC and ADE20K datasets show competitive results with
state-of-the-art, well validating the effectiveness of the proposed MicroSeg.
- Abstract(参考訳): 増分的あるいは連続的な学習は、画像分類タスクにおいて、破滅的な忘れを緩和するために広範囲に研究されてきた。
クラスインクリメンタルセマンティックセグメンテーションでは、背景シフトによってこのような現象がさらに悪化することが多く、すなわち、前の段階で学んだ概念が現在のトレーニング段階でバックグラウンドクラスに割り当てられるため、これらの古い概念のパフォーマンスが著しく低下する。
この問題に対処するため,本論文では,Regional Objectness for Segmentation (MicroSeg) を用いたマイニング未確認クラスを提案する。
われわれのMicroSegは、強い客観性を持つ背景領域が、歴史的または将来の段階においてそれらの概念に属するという仮定に基づいている。
そのため、現在のトレーニング段階で古い知識を忘れないように、私たちのMicroSegはまず、与えられたイメージをプロポーザルジェネレータで数百のセグメント提案に分割します。
背景から強いオブジェクト性を持つセグメント提案は、最適化中にクラスタ化され、新たに定義されたラベルが割り当てられる。
このように、特徴空間における古い概念を特徴付ける分布は、背景シフトによる破滅的な忘れを軽減し、よりよく認識される。
Pascal VOCとADE20Kデータセットの大規模な実験は、最先端技術による競合結果を示し、提案したMicroSegの有効性を十分に検証している。
関連論文リスト
- Mitigating Background Shift in Class-Incremental Semantic Segmentation [18.604420743751643]
クラスインクリメンタルセマンティック(CISS)は、古いクラスを忘れずに新しいクラスを学習することを目的としている。
CISSのためのバックグラウンドクラス分離フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T15:44:37Z) - Tendency-driven Mutual Exclusivity for Weakly Supervised Incremental Semantic Segmentation [56.1776710527814]
Weakly Incremental Learning for Semantic (WILSS)は、トレーニング済みのセグメンテーションモデルを利用して、コスト効率と手軽に利用できるイメージレベルのラベルを使用して、新しいクラスをセグメンテーションする。
WILSSを解く最も一般的な方法は、各新しいクラスのシード領域の生成であり、ピクセルレベルの監視の一形態として機能する。
本研究は, 種子領域の挙動を綿密に調整した, 相互排他性に関する革新的, 傾向的関係について提案する。
論文 参考訳(メタデータ) (2024-04-18T08:23:24Z) - Attribution-aware Weight Transfer: A Warm-Start Initialization for
Class-Incremental Semantic Segmentation [38.52441363934223]
クラスインクリメンタルセマンティックセグメンテーション(CISS)では、ディープラーニングアーキテクチャは破滅的な忘れ込みとセマンティックバックグラウンドシフトの致命的な問題に悩まされる。
本稿では、勾配に基づく属性を用いて、新しいクラスに最も関係のある重みを同定する手法を提案する。
この実験は,Pascal-VOC 2012 と ADE20K および Cityscapes の最新の CISS 手法と比較して,mIoU の大幅な改善を示した。
論文 参考訳(メタデータ) (2022-10-13T17:32:12Z) - Self-Supervised Video Object Segmentation via Cutout Prediction and
Tagging [117.73967303377381]
本稿では, 自己教師型ビデオオブジェクト(VOS)アプローチを提案する。
本手法は,対象情報と背景情報の両方を考慮した識別学習損失の定式化に基づく。
提案手法であるCT-VOSは, DAVIS-2017 と Youtube-VOS の2つの挑戦的なベンチマークにおいて,最先端の結果を達成している。
論文 参考訳(メタデータ) (2022-04-22T17:53:27Z) - Modeling the Background for Incremental and Weakly-Supervised Semantic
Segmentation [39.025848280224785]
セマンティックセグメンテーションのための新しい漸進的なクラス学習手法を提案する。
各トレーニングステップは、すべての可能なクラスのサブセットにのみアノテーションを提供するので、バックグラウンドクラスのピクセルはセマンティックシフトを示す。
本研究では,Pascal-VOC,ADE20K,Cityscapesのデータセットを広範囲に評価し,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-01-31T16:33:21Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
セマンティックセグメンテーションのためのシンプルで効果的な半教師付き学習フレームワークを提案する。
単純な設計とトレーニングのテクニックのセットは、半教師付きセマンティックセグメンテーションの性能を大幅に向上させることができる。
本手法は,Cityscapes と Pascal VOC データセットの半教師付き設定において,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2021-04-15T06:01:39Z) - Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals [78.12377360145078]
画素埋め込みを学習するために、コントラスト最適化の目的として、予め決められた事前を取り入れた新しい2段階フレームワークを導入する。
これは、プロキシタスクやエンドツーエンドのクラスタリングに依存する既存の作業から大きく逸脱している。
特に、PASCALでラベル付き例の1%だけを用いて学習した表現を微調整すると、7.1% mIoUで教師付き ImageNet の事前トレーニングを上回ります。
論文 参考訳(メタデータ) (2021-02-11T18:54:47Z) - A Few Guidelines for Incremental Few-Shot Segmentation [57.34237650765928]
事前訓練されたセグメンテーションモデルと、新しいクラスを含む画像が少ないことを前提として、我々が目指すのは、以前に見たセグメンテーション能力を維持しながら、新しいクラスをセグメンテーションすることである。
このシナリオにおけるエンド・ツー・エンドのトレーニングの主な問題はどのようなものかを示します。
一 バッチ正規化統計を、バッチ正規化で修正できる新しいクラスへ向けての漂流すること。
二 旧クラスの忘れ物 正規化戦略で解決できるもの。
論文 参考訳(メタデータ) (2020-11-30T20:45:56Z) - Modeling the Background for Incremental Learning in Semantic
Segmentation [39.025848280224785]
深いアーキテクチャは破滅的な忘れ方に弱い。
本稿では,意味的セグメンテーションの文脈においてこの問題に対処する。
本稿では,このシフトを明示的に考慮した蒸留法に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-03T13:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。