Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked
Modeling for Vision Decoding
- URL: http://arxiv.org/abs/2211.06956v3
- Date: Wed, 29 Mar 2023 03:25:08 GMT
- Title: Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked
Modeling for Vision Decoding
- Authors: Zijiao Chen, Jiaxin Qing, Tiange Xiang, Wan Lin Yue, Juan Helen Zhou
- Abstract summary: We present MinD-Vis: Sparse Masked Brain Modeling with Double-Conditioned Latent Diffusion Model for Human Vision Decoding.
We show that MinD-Vis can reconstruct highly plausible images with semantically matching details from brain recordings using very few paired annotations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Decoding visual stimuli from brain recordings aims to deepen our
understanding of the human visual system and build a solid foundation for
bridging human and computer vision through the Brain-Computer Interface.
However, reconstructing high-quality images with correct semantics from brain
recordings is a challenging problem due to the complex underlying
representations of brain signals and the scarcity of data annotations. In this
work, we present MinD-Vis: Sparse Masked Brain Modeling with Double-Conditioned
Latent Diffusion Model for Human Vision Decoding. Firstly, we learn an
effective self-supervised representation of fMRI data using mask modeling in a
large latent space inspired by the sparse coding of information in the primary
visual cortex. Then by augmenting a latent diffusion model with
double-conditioning, we show that MinD-Vis can reconstruct highly plausible
images with semantically matching details from brain recordings using very few
paired annotations. We benchmarked our model qualitatively and quantitatively;
the experimental results indicate that our method outperformed state-of-the-art
in both semantic mapping (100-way semantic classification) and generation
quality (FID) by 66% and 41% respectively. An exhaustive ablation study was
also conducted to analyze our framework.
Related papers
- Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Decoding Realistic Images from Brain Activity with Contrastive
Self-supervision and Latent Diffusion [29.335943994256052]
Reconstructing visual stimuli from human brain activities provides a promising opportunity to advance our understanding of the brain's visual system.
We propose a two-phase framework named Contrast and Diffuse (CnD) to decode realistic images from functional magnetic resonance imaging (fMRI) recordings.
arXiv Detail & Related papers (2023-09-30T09:15:22Z) - UniBrain: Unify Image Reconstruction and Captioning All in One Diffusion
Model from Human Brain Activity [2.666777614876322]
We propose UniBrain: Unify Image Reconstruction and Captioning All in One Diffusion Model from Human Brain Activity.
We transform fMRI voxels into text and image latent for low-level information to generate realistic captions and images.
UniBrain outperforms current methods both qualitatively and quantitatively in terms of image reconstruction and reports image captioning results for the first time on the Natural Scenes dataset.
arXiv Detail & Related papers (2023-08-14T19:49:29Z) - MindDiffuser: Controlled Image Reconstruction from Human Brain Activity
with Semantic and Structural Diffusion [7.597218661195779]
We propose a two-stage image reconstruction model called MindDiffuser.
In Stage 1, the VQ-VAE latent representations and the CLIP text embeddings decoded from fMRI are put into Stable Diffusion.
In Stage 2, we utilize the CLIP visual feature decoded from fMRI as supervisory information, and continually adjust the two feature vectors decoded in Stage 1 through backpagation to align the structural information.
arXiv Detail & Related papers (2023-08-08T13:28:34Z) - Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain
Activities [31.448924808940284]
We introduce a two-phase fMRI representation learning framework.
The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations.
The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder.
arXiv Detail & Related papers (2023-05-26T19:16:23Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.