Online Correlation Clustering for Dynamic Complete Signed Graphs
- URL: http://arxiv.org/abs/2211.07000v1
- Date: Sun, 13 Nov 2022 19:36:38 GMT
- Title: Online Correlation Clustering for Dynamic Complete Signed Graphs
- Authors: Ali Shakiba
- Abstract summary: We consider the problem of correlation clustering for dynamic complete signed graphs.
Online approximation algorithm in [CALM+21] for correlation clustering is used.
This is the first online algorithm for dynamic graphs which allows a full set of graph editing operations.
- Score: 9.13755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the correlation clustering problem for complete signed graphs, the input
is a complete signed graph with edges weighted as $+1$ (denote recommendation
to put this pair in the same cluster) or $-1$ (recommending to put this pair of
vertices in separate clusters) and the target is to cluster the set of vertices
such that the number of disagreements with these recommendations is minimized.
In this paper, we consider the problem of correlation clustering for dynamic
complete signed graphs where (1) a vertex can be added or deleted, and (2) the
sign of an edge can be flipped. In the proposed online scheme, the offline
approximation algorithm in [CALM+21] for correlation clustering is used. Up to
the author's knowledge, this is the first online algorithm for dynamic graphs
which allows a full set of graph editing operations.
The proposed approach is rigorously analyzed and compared with a baseline
method, which runs the original offline algorithm on each time step. Our
results show that the dynamic operations have local effects on the neighboring
vertices and we employ this locality to reduce the dependency of the running
time in the Baseline to the summation of the degree of all vertices in $G_t$,
the graph after applying the graph edit operation at time step $t$, to the
summation of the degree of the changing vertices (e.g. two endpoints of an
edge) and the number of clusters in the previous time step. Moreover, the
required working memory is reduced to the square of the summation of the degree
of the modified edge endpoints rather than the total number of vertices in the
graph.
Related papers
- One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
We show how to enforce a one-step normalized cut for bipartite graphs, especially with linear-time complexity.
In this paper, we first characterize a novel one-step bipartite graph cut criterion with normalized constraints, and theoretically prove its equivalence to a trace problem.
We extend this cut criterion to a scalable subspace clustering approach, where adaptive anchor learning, bipartite graph learning, and one-step normalized bipartite graph partitioning are simultaneously modeled.
arXiv Detail & Related papers (2023-05-12T11:27:20Z) - Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information
Maximization Network [31.38584638254226]
We study the problem of partitioning a set of graphs into different groups such that the graphs in the same group are similar while the graphs in different groups are dissimilar.
To solve the problem, we propose a novel method called Deep Graph-Level Clustering (DGLC)
Our DGLC achieves graph-level representation learning and graph-level clustering in an end-to-end manner.
arXiv Detail & Related papers (2023-02-05T12:28:08Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
Many real-world systems can be represented as graphs where the different entities in the system are presented by nodes and their interactions by edges.
An important task in studying large datasets with graphical structure is graph clustering.
We introduce a graph signal processing based approach, where we learn the parameters of Finite Impulse Response (FIR) and Autoregressive Moving Average (ARMA) graph filters optimized for clustering.
arXiv Detail & Related papers (2022-11-09T01:49:23Z) - AnchorGAE: General Data Clustering via $O(n)$ Bipartite Graph
Convolution [79.44066256794187]
We show how to convert a non-graph dataset into a graph by introducing the generative graph model, which is used to build graph convolution networks (GCNs)
A bipartite graph constructed by anchors is updated dynamically to exploit the high-level information behind data.
We theoretically prove that the simple update will lead to degeneration and a specific strategy is accordingly designed.
arXiv Detail & Related papers (2021-11-12T07:08:13Z) - Robust Correlation Clustering with Asymmetric Noise [3.8073142980733]
Correlation Clustering is a graph clustering formulation which: (1) takes as input a signed graph with edge weights representing a similarity/dissimilarity measure between the nodes, and (2) requires no prior estimate of the number of clusters in the input graph.
We propose a novel graph generative model, called the Node Factors Model (NFM), which is based on generating feature vectors/embeddings for the graph nodes.
arXiv Detail & Related papers (2021-10-15T21:47:27Z) - Seeing All From a Few: Nodes Selection Using Graph Pooling for Graph
Clustering [37.68977275752782]
noisy edges and nodes in the graph may make the clustering results worse.
We propose a novel dual graph embedding network(DGEN) to improve the robustness of the graph clustering to the noisy nodes and edges.
Experiments on three benchmark graph datasets demonstrate the superiority compared with several state-of-the-art algorithms.
arXiv Detail & Related papers (2021-04-30T06:51:51Z) - Multilayer Graph Clustering with Optimized Node Embedding [70.1053472751897]
multilayer graph clustering aims at dividing the graph nodes into categories or communities.
We propose a clustering-friendly embedding of the layers of a given multilayer graph.
Experiments show that our method leads to a significant improvement.
arXiv Detail & Related papers (2021-03-30T17:36:40Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.