Seeing All From a Few: Nodes Selection Using Graph Pooling for Graph
Clustering
- URL: http://arxiv.org/abs/2105.05320v1
- Date: Fri, 30 Apr 2021 06:51:51 GMT
- Title: Seeing All From a Few: Nodes Selection Using Graph Pooling for Graph
Clustering
- Authors: Yiming Wang, Dongxia Chang, Zhiqian Fu, and Yao Zhao
- Abstract summary: noisy edges and nodes in the graph may make the clustering results worse.
We propose a novel dual graph embedding network(DGEN) to improve the robustness of the graph clustering to the noisy nodes and edges.
Experiments on three benchmark graph datasets demonstrate the superiority compared with several state-of-the-art algorithms.
- Score: 37.68977275752782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph clustering aiming to obtain a partition of data using the graph
information, has received considerable attention in recent years. However,
noisy edges and nodes in the graph may make the clustering results worse. In
this paper, we propose a novel dual graph embedding network(DGEN) to improve
the robustness of the graph clustering to the noisy nodes and edges. DGEN is
designed as a two-step graph encoder connected by a graph pooling layer, which
learns the graph embedding of the selected nodes. Based on the assumption that
a node and its nearest neighbors should belong to the same cluster, we devise
the neighbor cluster pooling(NCPool) to select the most informative subset of
vertices based on the clustering assignments of nodes and their nearest
neighbor. This can effectively alleviate the impact of the noise edge to the
clustering. After obtaining the clustering assignments of the selected nodes, a
classifier is trained using these selected nodes and the final clustering
assignments for all the nodes can be obtained by this classifier. Experiments
on three benchmark graph datasets demonstrate the superiority compared with
several state-of-the-art algorithms.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - Careful Selection and Thoughtful Discarding: Graph Explicit Pooling
Utilizing Discarded Nodes [53.08068729187698]
We introduce a novel Graph Explicit Pooling (GrePool) method, which selects nodes by explicitly leveraging the relationships between the nodes and final representation vectors crucial for classification.
We conduct comprehensive experiments across 12 widely used datasets to validate our proposed method's effectiveness.
arXiv Detail & Related papers (2023-11-21T14:44:51Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - MPool: Motif-Based Graph Pooling [0.0]
Graph Neural networks (GNNs) have recently become a powerful technique for many graph-related tasks including graph classification.
We propose a multi-channel Motif-based Graph Pooling method named (MPool)
As the first channel, we develop node selection-based graph pooling by designing a node ranking model considering the motif adjacency of nodes.
As the second channel, we develop cluster-based graph pooling by designing a spectral clustering model using motif adjacency.
As the final layer, the result of each channel is aggregated into the final graph representation.
arXiv Detail & Related papers (2023-03-07T05:21:15Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
Many real-world systems can be represented as graphs where the different entities in the system are presented by nodes and their interactions by edges.
An important task in studying large datasets with graphical structure is graph clustering.
We introduce a graph signal processing based approach, where we learn the parameters of Finite Impulse Response (FIR) and Autoregressive Moving Average (ARMA) graph filters optimized for clustering.
arXiv Detail & Related papers (2022-11-09T01:49:23Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
We propose a Graph Inference Learning framework to boost the performance of semi-supervised node classification.
For learning the inference process, we introduce meta-optimization on structure relations from training nodes to validation nodes.
Comprehensive evaluations on four benchmark datasets demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T02:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.