論文の概要: A taxonomic system for failure cause analysis of open source AI
incidents
- arxiv url: http://arxiv.org/abs/2211.07280v1
- Date: Mon, 14 Nov 2022 11:21:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 19:25:22.960713
- Title: A taxonomic system for failure cause analysis of open source AI
incidents
- Title(参考訳): オープンソースAIインシデントにおける障害原因分析のための分類システム
- Authors: Nikiforos Pittaras, Sean McGregor
- Abstract要約: この研究は、AIID(AI Incident Database)におけるインシデントの集団に専門家の知識を適用する方法を示し、報告された障害や損害に寄与する潜在的な技術的因果関係を推測する。
本稿では,システム目標(ほぼ常に知られている)から手法/技術(多くの場合は理解できない),および関連するシステムの技術的障害原因(専門家分析の対象)まで,関連要因のカスケードをカバーする分類システムについて概説する。
- 参考スコア(独自算出の注目度): 6.85316573653194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While certain industrial sectors (e.g., aviation) have a long history of
mandatory incident reporting complete with analytical findings, the practice of
artificial intelligence (AI) safety benefits from no such mandate and thus
analyses must be performed on publicly known ``open source'' AI incidents.
Although the exact causes of AI incidents are seldom known by outsiders, this
work demonstrates how to apply expert knowledge on the population of incidents
in the AI Incident Database (AIID) to infer the potential and likely technical
causative factors that contribute to reported failures and harms. We present
early work on a taxonomic system that covers a cascade of interrelated incident
factors, from system goals (nearly always known) to methods / technologies
(knowable in many cases) and technical failure causes (subject to expert
analysis) of the implicated systems. We pair this ontology structure with a
comprehensive classification workflow that leverages expert knowledge and
community feedback, resulting in taxonomic annotations grounded by incident
data and human expertise.
- Abstract(参考訳): 特定の産業部門(例えば航空)は、分析的な発見を完備した強制的なインシデントレポートの長い歴史を持っているが、人工知能(AI)の安全性の実践はそのような委任事項から恩恵を受けておらず、公に知られている「オープンソース」AIインシデントに対して分析を行う必要がある。
aiインシデントの原因は、外部からはほとんど知られていないが、本研究では、aiインシデントデータベース(aiid)のインシデント集団に専門家の知識を適用する方法を示し、報告された失敗や危害に寄与する可能性と潜在的な技術的原因を推測する。
本稿では,システム目標(ほぼ常に知られている)から手法/技術(多くの場合は理解できない),および関連するシステムの技術的障害原因(専門家分析の対象)まで,関連要因のカスケードをカバーする分類システムについて概説する。
このオントロジー構造を、専門家の知識とコミュニティのフィードバックを活用する包括的な分類ワークフローと組み合わせることで、インシデントデータと人間の専門知識に基づく分類学的アノテーションを実現する。
関連論文リスト
- From Silos to Systems: Process-Oriented Hazard Analysis for AI Systems [2.226040060318401]
システム理論プロセス分析(STPA)をAIの操作と開発プロセスの解析に応用する。
我々は、機械学習アルゴリズムに依存したシステムと、3つのケーススタディに焦点をあてる。
私たちは、AIシステムに適したいくつかの適応があるにもかかわらず、anAを実行するための重要な概念とステップが容易に適用できることに気付きました。
論文 参考訳(メタデータ) (2024-10-29T20:43:18Z) - Lessons for Editors of AI Incidents from the AI Incident Database [2.5165775267615205]
AIインシデントデータベース(AIID)は、AIインシデントをカタログ化し、インシデントを分類するプラットフォームを提供することでさらなる研究を支援するプロジェクトである。
この研究は、AIIDの750以上のAIインシデントのデータセットと、これらのインシデントに適用された2つの独立した曖昧さをレビューし、AIインシデントをインデックス化し分析する一般的な課題を特定する。
我々は、インシデントプロセスが原因、害の程度、重大さ、あるいは関連するシステムの技術的詳細に関連する不確実性に対してより堅牢になるよう、軽減策を報告する。
論文 参考訳(メタデータ) (2024-09-24T19:46:58Z) - Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
より具体的なアプリケーションやユーザに対して分析を専門化すれば,ユーザに対するリスクや害の明確な評価が可能になる,と我々は主張する。
リスク指向のエラー分析を行い、リスクの低減とパフォーマンスの向上を図り、将来のシステムの設計を通知する。
論文 参考訳(メタデータ) (2024-08-16T17:23:43Z) - A Survey on Failure Analysis and Fault Injection in AI Systems [28.30817443151044]
AIシステムの複雑さは脆弱性を露呈し、レジリエンスと信頼性を確保するために、障害分析(FA)と障害注入(FI)の堅牢な方法を必要とする。
この研究は、AIシステムの6層にわたる既存のFAとFIのアプローチを詳細に調査することで、このギャップを埋める。
この結果から,AIシステム障害の分類,既存のFIツールの能力評価,実世界とシミュレーション失敗の相違点が明らかになった。
論文 参考訳(メタデータ) (2024-06-28T00:32:03Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - A Framework for Exploring the Consequences of AI-Mediated Enterprise Knowledge Access and Identifying Risks to Workers [3.4568218861862556]
本稿では、AIを利用した企業知識アクセスシステムから労働者のリスクを特定するためのConsequence-Mechanism-Riskフレームワークを提案する。
我々は、労働者に対するリスクを詳述した幅広い文献を執筆し、労働者の価値、力、幸福に対するリスクを分類した。
今後の作業は、この枠組みを他の技術システムに適用し、労働者や他のグループの保護を促進する可能性がある。
論文 参考訳(メタデータ) (2023-12-08T17:05:40Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Liability regimes in the age of AI: a use-case driven analysis of the
burden of proof [1.7510020208193926]
人工知能(AI)を利用した新しいテクノロジーは、私たちの社会をより良く、破壊的に変革する可能性を秘めている。
しかし、安全と基本的権利の両方に潜在的なリスクをもたらす、これらの方法論の固有の特性に対する懸念が高まっている。
本稿では,これらの難易度を示す3つのケーススタディと,それらに到達するための方法論について述べる。
論文 参考訳(メタデータ) (2022-11-03T13:55:36Z) - Mining Root Cause Knowledge from Cloud Service Incident Investigations
for AIOps [71.12026848664753]
サービス破壊インシデントの根本原因分析(RCA)は、ITプロセスにおける最も重要かつ複雑なタスクの1つです。
本研究では、Salesforceで構築されたICAと、ダウンストリームのインシデントサーチとレトリーバルベースのRCAパイプラインについて紹介する。
論文 参考訳(メタデータ) (2022-04-21T02:33:34Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Overcoming Failures of Imagination in AI Infused System Development and
Deployment [71.9309995623067]
NeurIPS 2020は研究論文に「潜在的な悪用と失敗の結果」に関するインパクトステートメントを含むよう要求した。
我々は、害の枠組みは文脈に適応し、潜在的な利害関係者、システム余裕、および最も広い意味での害を評価するための実行可能なプロキシを考える必要があると論じている。
論文 参考訳(メタデータ) (2020-11-26T18:09:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。