Parallel Automatic History Matching Algorithm Using Reinforcement
Learning
- URL: http://arxiv.org/abs/2211.07434v1
- Date: Mon, 14 Nov 2022 15:09:39 GMT
- Title: Parallel Automatic History Matching Algorithm Using Reinforcement
Learning
- Authors: Omar S. Alolayan, Abdullah O. Alomar and John R. Williams
- Abstract summary: Reformulating the history matching problem into a Markov Decision Process introduces a method in which reinforcement learning can be utilized to solve the problem.
This method provides a mechanism where an artificial deep neural network agent can interact with the reservoir simulator and find multiple different solutions to the problem.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reformulating the history matching problem from a least-square mathematical
optimization problem into a Markov Decision Process introduces a method in
which reinforcement learning can be utilized to solve the problem. This method
provides a mechanism where an artificial deep neural network agent can interact
with the reservoir simulator and find multiple different solutions to the
problem. Such formulation allows for solving the problem in parallel by
launching multiple concurrent environments enabling the agent to learn
simultaneously from all the environments at once, achieving significant speed
up.
Related papers
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
This study proposes a different approach that integrates gradient-based update through continuous relaxation, combined with Quasi-Quantum Annealing (QQA)
Numerical experiments demonstrate that our method is a competitive general-purpose solver, achieving performance comparable to iSCO and learning-based solvers.
arXiv Detail & Related papers (2024-09-02T12:55:27Z) - Deep multitask neural networks for solving some stochastic optimal
control problems [0.0]
In this paper, we consider a class of optimal control problems and introduce an effective solution employing neural networks.
To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks.
Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2024-01-23T17:20:48Z) - Solving the capacitated vehicle routing problem with timing windows
using rollouts and MAX-SAT [4.873362301533824]
Vehicle routing is a well known class of NP-hard optimisation problems.
Recent work in reinforcement learning has been a promising alternative approach.
This paper proposes a hybrid approach that combines reinforcement learning, policy rollouts, and a satisfiability.
arXiv Detail & Related papers (2022-06-14T06:27:09Z) - Distributed Allocation and Scheduling of Tasks with Cross-Schedule
Dependencies for Heterogeneous Multi-Robot Teams [2.294915015129229]
We present a distributed task allocation and scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal and precedence constraints.
An application of the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.
arXiv Detail & Related papers (2021-09-07T13:44:28Z) - End-to-End Constrained Optimization Learning: A Survey [69.22203885491534]
It focuses on surveying the work on integrating solvers and optimization methods with machine learning architectures.
These approaches hold the promise to develop new hybrid machine learning and optimization methods to predict fast, approximate, structural, solutions to problems and to enable logical inference.
arXiv Detail & Related papers (2021-03-30T14:19:30Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z) - Model-based Multi-Agent Reinforcement Learning with Cooperative
Prioritized Sweeping [4.5497948012757865]
We present a new model-based reinforcement learning algorithm, Cooperative Prioritized Sweeping.
The algorithm allows for sample-efficient learning on large problems by exploiting a factorization to approximate the value function.
Our method outperforms the state-of-the-art algorithm sparse cooperative Q-learning algorithm, both on the well-known SysAdmin benchmark and randomized environments.
arXiv Detail & Related papers (2020-01-15T19:13:44Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.