End-to-End Constrained Optimization Learning: A Survey
- URL: http://arxiv.org/abs/2103.16378v1
- Date: Tue, 30 Mar 2021 14:19:30 GMT
- Title: End-to-End Constrained Optimization Learning: A Survey
- Authors: James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Bryan Wilder
- Abstract summary: It focuses on surveying the work on integrating solvers and optimization methods with machine learning architectures.
These approaches hold the promise to develop new hybrid machine learning and optimization methods to predict fast, approximate, structural, solutions to problems and to enable logical inference.
- Score: 69.22203885491534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper surveys the recent attempts at leveraging machine learning to
solve constrained optimization problems. It focuses on surveying the work on
integrating combinatorial solvers and optimization methods with machine
learning architectures. These approaches hold the promise to develop new hybrid
machine learning and optimization methods to predict fast, approximate,
solutions to combinatorial problems and to enable structural logical inference.
This paper presents a conceptual review of the recent advancements in this
emerging area.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Rapid quantum approaches for combinatorial optimisation inspired by
optimal state-transfer [3.591122855617648]
We propose a new design to tackle optimisation problems, inspired by Hamiltonians for optimal state-transfer.
We provide numerical evidence of the success of this new design.
arXiv Detail & Related papers (2023-01-17T12:45:09Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
We propose to replace the iterative solvers altogether with a trainable parametric set function.
We show the feasibility of learning such parametric (set) functions to solve various classic optimization problems.
arXiv Detail & Related papers (2022-02-08T19:13:13Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
Vehicle routing problem (VRP) is a typical discrete optimization problem.
Many studies consider learning-based optimization algorithms to solve VRP.
This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.
arXiv Detail & Related papers (2021-07-15T02:13:03Z) - Learning Primal Heuristics for Mixed Integer Programs [5.766851255770718]
We investigate whether effective primals can be automatically learned via machine learning.
We propose a new method to represent an optimization problem as a graph, and train a Graph Conal Network on solved problem instances with known optimal solutions.
The prediction of variable solutions is then leveraged by a novel configuration of the B&B method, Probabilistic Branching with guided Depth-first Search.
arXiv Detail & Related papers (2021-07-02T06:46:23Z) - SeaPearl: A Constraint Programming Solver guided by Reinforcement
Learning [0.0]
This paper presents the proof of concept for SeaPearl, a new constraint programming solver implemented in Julia.
SeaPearl supports machine learning routines in order to learn branching decisions using reinforcement learning.
Although not yet competitive with industrial solvers, SeaPearl aims to provide a flexible and open-source framework.
arXiv Detail & Related papers (2021-02-18T07:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.