Additive Covariance Matrix Models: Modelling Regional Electricity Net-Demand in Great Britain
- URL: http://arxiv.org/abs/2211.07451v3
- Date: Wed, 17 Apr 2024 14:52:45 GMT
- Title: Additive Covariance Matrix Models: Modelling Regional Electricity Net-Demand in Great Britain
- Authors: V. Gioia, M. Fasiolo, J. Browell, R. Bellio,
- Abstract summary: We forecast the joint distribution of net-demand across the 14 regions constituting Great Britain's electricity network.
Joint modelling is complicated by the fact that the net-demand variability within each region, and the dependencies between regions, vary with temporal, socio-economical and weather-related factors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasts of regional electricity net-demand, consumption minus embedded generation, are an essential input for reliable and economic power system operation, and energy trading. While such forecasts are typically performed region by region, operations such as managing power flows require spatially coherent joint forecasts, which account for cross-regional dependencies. Here, we forecast the joint distribution of net-demand across the 14 regions constituting Great Britain's electricity network. Joint modelling is complicated by the fact that the net-demand variability within each region, and the dependencies between regions, vary with temporal, socio-economical and weather-related factors. We accommodate for these characteristics by proposing a multivariate Gaussian model based on a modified Cholesky parametrisation, which allows us to model each unconstrained parameter via an additive model. Given that the number of model parameters and covariates is large, we adopt a semi-automated approach to model selection, based on gradient boosting. In addition to comparing the forecasting performance of several versions of the proposed model with that of two non-Gaussian copula-based models, we visually explore the model output to interpret how the covariates affect net-demand variability and dependencies. The code for reproducing the results in this paper is available at https://doi.org/10.5281/zenodo.7315105, while methods for building and fitting multivariate Gaussian additive models are provided by the SCM R package, available at https://github.com/VinGioia90/SCM.
Related papers
- Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks [0.0]
Wind represents a particularly challenging variable to model due to its high spatial and temporal variability.
This paper presents a novel approach that integrates Gaussian processes (GPs) and neural networks to model surface wind gusts.
We discuss the effect of different modeling choices, as well as different degrees of approximation, and present our results for a case study.
arXiv Detail & Related papers (2024-05-21T09:07:47Z) - Forecasting Intraday Power Output by a Set of PV Systems using Recurrent Neural Networks and Physical Covariates [0.0]
Accurate forecasts of the power output by PhotoVoltaic (PV) systems are critical to improve the operation of energy distribution grids.
We describe a neural autoregressive model that aims to perform such intraday forecasts.
arXiv Detail & Related papers (2023-03-15T09:03:58Z) - Frugal day-ahead forecasting of multiple local electricity loads by
aggregating adaptive models [0.0]
We focus on day-ahead electricity load forecasting of substations of the distribution network in France.
We develop a frugal variant, reducing the number of parameters estimated, to achieve transfer learning.
We highlight the interpretability of the models, which is important for operational applications.
arXiv Detail & Related papers (2023-02-16T10:17:19Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Variational Filtering with Copula Models for SLAM [5.242618356321224]
We show how it is possible to perform simultaneous localization and mapping (SLAM) with a larger class of distributions.
We integrate the distribution model with copulas into a Sequential Monte Carlo estimator and show how unknown model parameters can be learned through gradient-based optimization.
arXiv Detail & Related papers (2020-08-02T15:38:23Z) - Additive stacking for disaggregate electricity demand forecasting [1.0499611180329804]
Future grid management systems will coordinate distributed production and storage resources to manage, in a cost effective fashion, the increased load and variability brought by the electrification of transportation and by a higher share of weather dependent production.
We focus on forecasting demand at the individual household level, which is more challenging than forecasting aggregate demand, due to the lower signal-to-noise ratio and to the heterogeneity of consumption patterns across households.
In particular, we develop a set of models or 'experts' which capture different demand dynamics and we fit each of them to the data from each household.
Then we construct an aggregation of experts where the ensemble weights
arXiv Detail & Related papers (2020-05-20T14:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.