Online Multivariate Regularized Distributional Regression for High-dimensional Probabilistic Electricity Price Forecasting
- URL: http://arxiv.org/abs/2504.02518v1
- Date: Thu, 03 Apr 2025 12:08:51 GMT
- Title: Online Multivariate Regularized Distributional Regression for High-dimensional Probabilistic Electricity Price Forecasting
- Authors: Simon Hirsch,
- Abstract summary: We present an online, multivariate, regularized distributional regression model.<n>Online estimation yields a speed-up by a factor of 80 to over 400 times compared to batch fitting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic electricity price forecasting (PEPF) is a key task for market participants in short-term electricity markets. The increasing availability of high-frequency data and the need for real-time decision-making in energy markets require online estimation methods for efficient model updating. We present an online, multivariate, regularized distributional regression model, allowing for the modeling of all distribution parameters conditional on explanatory variables. Our approach is based on the combination of the multivariate distributional regression and an efficient online learning algorithm based on online coordinate descent for LASSO-type regularization. Additionally, we propose to regularize the estimation along a path of increasingly complex dependence structures of the multivariate distribution, allowing for parsimonious estimation and early stopping. We validate our approach through one of the first forecasting studies focusing on multivariate probabilistic forecasting in the German day-ahead electricity market while using only online estimation methods. We compare our approach to online LASSO-ARX-models with adaptive marginal distribution and to online univariate distributional models combined with an adaptive Copula. We show that the multivariate distributional regression, which allows modeling all distribution parameters - including the mean and the dependence structure - conditional on explanatory variables such as renewable in-feed or past prices provide superior forecasting performance compared to modeling of the marginals only and keeping a static/unconditional dependence structure. Additionally, online estimation yields a speed-up by a factor of 80 to over 400 times compared to batch fitting.
Related papers
- GeneralizeFormer: Layer-Adaptive Model Generation across Test-Time Distribution Shifts [58.95913531746308]
We consider the problem of test-time domain generalization, where a model is trained on several source domains and adjusted on target domains never seen during training.
We propose to generate multiple layer parameters on the fly during inference by a lightweight meta-learned transformer, which we call textitGeneralizeFormer.
arXiv Detail & Related papers (2025-02-15T10:10:49Z) - Generative Distribution Prediction: A Unified Approach to Multimodal Learning [4.3108820946281945]
We introduce Generative Distribution Prediction (GDP) to enhance predictive performance across structured and unstructured modalities.
GDP is model-agnostic, compatible with any high-fidelity generative model, and supports transfer learning for domain adaptation.
We empirically validate GDP on four supervised learning tasks-tabular data prediction, question answering, image captioning, and adaptive quantile regression-demonstrating its versatility and effectiveness across diverse domains.
arXiv Detail & Related papers (2025-02-10T22:30:35Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Online Distributional Regression [0.0]
Large-scale streaming data are common in modern machine learning applications.
Many fields, such as supply chain management, weather and meteorology, have pivoted towards using probabilistic forecasts.
We present a methodology for online estimation of regularized, linear distributional models.
arXiv Detail & Related papers (2024-06-26T16:04:49Z) - Probabilistic Forecasting of Real-Time Electricity Market Signals via Interpretable Generative AI [41.99446024585741]
We present WIAE-GPF, a Weak Innovation AutoEncoder-based Generative Probabilistic Forecasting architecture.
A novel learning algorithm with structural convergence guarantees is proposed, ensuring that the generated forecast samples match the ground truth conditional probability distribution.
arXiv Detail & Related papers (2024-03-09T00:41:30Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Model-based Offline Policy Optimization with Adversarial Network [0.36868085124383626]
We propose a novel Model-based Offline policy optimization framework with Adversarial Network (MOAN)
Key idea is to use adversarial learning to build a transition model with better generalization.
Our approach outperforms existing state-of-the-art baselines on widely studied offline RL benchmarks.
arXiv Detail & Related papers (2023-09-05T11:49:33Z) - Multivariate Probabilistic CRPS Learning with an Application to
Day-Ahead Electricity Prices [0.0]
This paper presents a new method for combining (or aggregating or ensembling) multivariate probabilistic forecasts.
It considers dependencies between quantiles and marginals through a smoothing procedure that allows for online learning.
A fast C++ implementation of the proposed algorithm is provided in the open-source R-Package profoc on CRAN.
arXiv Detail & Related papers (2023-03-17T14:47:55Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the EPEX spot markets in a distinct hourly pattern.
This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts.
arXiv Detail & Related papers (2022-05-27T08:38:20Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Probabilistic multivariate electricity price forecasting using implicit
generative ensemble post-processing [0.0]
We use a likelihood-free implicit generative model based on an ensemble of point forecasting models to generate multivariate electricity price scenarios.
Our ensemble post-processing method outperforms well-established model combination benchmarks.
As our method works on top of an ensemble of domain-specific expert models, it can readily be deployed to other forecasting tasks.
arXiv Detail & Related papers (2020-05-27T15:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.