Follow the Wisdom of the Crowd: Effective Text Generation via Minimum
Bayes Risk Decoding
- URL: http://arxiv.org/abs/2211.07634v1
- Date: Mon, 14 Nov 2022 18:57:37 GMT
- Title: Follow the Wisdom of the Crowd: Effective Text Generation via Minimum
Bayes Risk Decoding
- Authors: Mirac Suzgun, Luke Melas-Kyriazi, Dan Jurafsky
- Abstract summary: We present crowd sampling, a family of decoding methods based on Bayesian risk minimization.
Crowd sampling seeks to select a candidate from a pool of candidates that has the least expected risk.
Experiments show that crowd sampling delivers improvements of 3-7 ROUGE and BLEU points across a wide range of tasks.
- Score: 27.454582992694974
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In open-ended natural-language generation, existing text decoding methods
typically struggle to produce text which is both diverse and high-quality.
Greedy and beam search are known to suffer from text degeneration and
linguistic diversity issues, while temperature, top-k, and nucleus sampling
often yield diverse but low-quality outputs. In this work, we present crowd
sampling, a family of decoding methods based on Bayesian risk minimization, to
address this diversity-quality trade-off. Inspired by the principle of "the
wisdom of the crowd," crowd sampling seeks to select a candidate from a pool of
candidates that has the least expected risk (i.e., highest expected reward)
under a generative model according to a given utility function. Crowd sampling
can be seen as a generalization of numerous existing methods, including
majority voting, and in practice, it can be used as a drop-in replacement for
existing sampling methods. Extensive experiments show that crowd sampling
delivers improvements of 3-7 ROUGE and BLEU points across a wide range of
tasks, including summarization, data-to-text, translation, and textual style
transfer, while achieving new state-of-the-art results on WebNLG and WMT'16.
Related papers
- Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation [60.493180081319785]
We propose a systematic way to estimate the intrinsic capacity of a truncation sampling method by considering the trade-off between diversity and risk at each decoding step.
Our work provides a comprehensive comparison between existing truncation sampling methods, as well as their recommended parameters as a guideline for users.
arXiv Detail & Related papers (2024-08-24T14:14:32Z) - Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs [4.122612309805664]
Large Language Models (LLMs) generate text by sampling the next token from a probability distribution over the vocabulary at each decoding step.
We propose min-p sampling, a dynamic truncation method that adjusts the sampling threshold based on the model's confidence by scaling according to the top token's probability.
We conduct extensive experiments on benchmarks including GPQA, GSM8K, and AlpacaEval Creative Writing, demonstrating that min-p sampling improves both the quality and diversity of generated text, particularly at high temperatures.
arXiv Detail & Related papers (2024-07-01T08:37:25Z) - ToBlend: Token-Level Blending With an Ensemble of LLMs to Attack AI-Generated Text Detection [6.27025292177391]
ToBlend is a novel token-level ensemble text generation method to challenge the robustness of current AI-content detection approaches.
We find ToBlend significantly drops the performance of most mainstream AI-content detection methods.
arXiv Detail & Related papers (2024-02-17T02:25:57Z) - Language Model Decoding as Direct Metrics Optimization [87.68281625776282]
Current decoding methods struggle to generate texts that align with human texts across different aspects.
In this work, we frame decoding from a language model as an optimization problem with the goal of strictly matching the expected performance with human texts.
We prove that this induced distribution is guaranteed to improve the perplexity on human texts, which suggests a better approximation to the underlying distribution of human texts.
arXiv Detail & Related papers (2023-10-02T09:35:27Z) - Bilevel Scheduled Sampling for Dialogue Generation [6.89978591161039]
We propose a bilevel scheduled sampling model that takes the sentence-level information into account and incorporates it with word-level quality.
Experiments conducted on the DailyDialog and PersonaChat datasets demonstrate the effectiveness of our proposed methods.
arXiv Detail & Related papers (2023-09-05T05:05:06Z) - $\textit{latent}$-GLAT: Glancing at Latent Variables for Parallel Text
Generation [65.29170569821093]
parallel text generation has received widespread attention due to its success in generation efficiency.
In this paper, we propose $textitlatent$-GLAT, which employs the discrete latent variables to capture word categorical information.
Experiment results show that our method outperforms strong baselines without the help of an autoregressive model.
arXiv Detail & Related papers (2022-04-05T07:34:12Z) - A Well-Composed Text is Half Done! Composition Sampling for Diverse
Conditional Generation [79.98319703471596]
We propose Composition Sampling, a simple but effective method to generate diverse outputs for conditional generation of higher quality.
It builds on recently proposed plan-based neural generation models that are trained to first create a composition of the output and then generate by conditioning on it and the input.
arXiv Detail & Related papers (2022-03-28T21:24:03Z) - A Contrastive Framework for Neural Text Generation [46.845997620234265]
We show that an underlying reason for model degeneration is the anisotropic distribution of token representations.
We present a contrastive solution: (i) SimCTG, a contrastive training objective to calibrate the model's representation space, and (ii) a decoding method -- contrastive search -- to encourage diversity while maintaining coherence in the generated text.
arXiv Detail & Related papers (2022-02-13T21:46:14Z) - Neural Text Generation with Part-of-Speech Guided Softmax [82.63394952538292]
We propose using linguistic annotation, i.e., part-of-speech (POS), to guide the text generation.
We show that our proposed methods can generate more diverse text while maintaining comparable quality.
arXiv Detail & Related papers (2021-05-08T08:53:16Z) - Informed Sampling for Diversity in Concept-to-Text NLG [8.883733362171034]
We propose an Imitation Learning approach to explore the level of diversity that a language generation model can reliably produce.
Specifically, we augment the decoding process with a meta-classifier trained to distinguish which words at any given timestep will lead to high-quality output.
arXiv Detail & Related papers (2020-04-29T17:43:24Z) - Self-Adversarial Learning with Comparative Discrimination for Text
Generation [111.18614166615968]
We propose a novel self-adversarial learning (SAL) paradigm for improving GANs' performance in text generation.
During training, SAL rewards the generator when its currently generated sentence is found to be better than its previously generated samples.
Experiments on text generation benchmark datasets show that our proposed approach substantially improves both the quality and the diversity.
arXiv Detail & Related papers (2020-01-31T07:50:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.