論文の概要: Learnable Spatio-Temporal Map Embeddings for Deep Inertial Localization
- arxiv url: http://arxiv.org/abs/2211.07635v1
- Date: Mon, 14 Nov 2022 18:58:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 19:54:29.383461
- Title: Learnable Spatio-Temporal Map Embeddings for Deep Inertial Localization
- Title(参考訳): 深部慣性局在のための学習可能な時空間マップ埋め込み
- Authors: Dennis Melamed, Karnik Ram, Vivek Roy, Kris Kitani
- Abstract要約: 本稿では,地図上のユーザ位置に関するデータ駆動型事前提案を行う。
従来の手作業で定義した手法よりも,どの地図領域がユーザにとって実現可能な場所かを,より正確にエンコードすることを学びました。
- 参考スコア(独自算出の注目度): 21.300194809454077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Indoor localization systems often fuse inertial odometry with map information
via hand-defined methods to reduce odometry drift, but such methods are
sensitive to noise and struggle to generalize across odometry sources. To
address the robustness problem in map utilization, we propose a data-driven
prior on possible user locations in a map by combining learned spatial map
embeddings and temporal odometry embeddings. Our prior learns to encode which
map regions are feasible locations for a user more accurately than previous
hand-defined methods. This prior leads to a 49% improvement in inertial-only
localization accuracy when used in a particle filter. This result is
significant, as it shows that our relative positioning method can match the
performance of absolute positioning using bluetooth beacons. To show the
generalizability of our method, we also show similar improvements using wheel
encoder odometry.
- Abstract(参考訳): 屋内ローカライズシステムでは、慣性オドメトリと地図情報とを融合してオドメトリドリフトを低減させることが多いが、そのような方法はノイズに敏感であり、オドメトリソースをまたいで一般化するのに苦労している。
地図利用におけるロバスト性問題に対処するために,学習された空間地図の埋め込みと時間計測の埋め込みを組み合わせることで,地図内のユーザ位置を先導するデータ駆動型手法を提案する。
これまでの手定義手法よりも,ユーザにとって,どのマップ領域が実現可能な場所であるかをエンコードすることを学びました。
これにより、粒子フィルタで使用する場合、慣性のみの局所化精度が49%向上する。
この結果は,ブルートゥースビーコンを用いた絶対位置決め性能と相対位置決め法が一致できることが示唆された。
また,本手法の一般化性を示すため,ホイールエンコーダオドメトリーを用いて同様の改善を行った。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Map-aided annotation for pole base detection [0.0]
本稿では2次元HDマップを用いて,画像中の極状特徴を自動的にアノテートする。
高さ情報がない場合、地図の特徴は地上のポールベースとして表現される。
ポールベースを検出するためにオブジェクト検出器をどのように訓練するかを示す。
論文 参考訳(メタデータ) (2024-03-04T09:23:11Z) - Improving Fuzzy-Logic based Map-Matching Method with Trajectory
Stay-Point Detection [3.093890460224435]
多くのGPS軌跡データセットには、静止点の不規則性が含まれており、地図マッチングアルゴリズムは、無関係な道路へのミスマッチ軌跡を作る。
我々は,DBSCANを用いた軌道データセット内の静止点をクラスタ化し,冗長データを排除し,マップマッチングアルゴリズムの効率を向上する。
提案手法は,従来のファジィ論理に基づくマップマッチング手法と同じ精度で,データサイズを27.39%削減し,処理時間を8.9%削減する。
論文 参考訳(メタデータ) (2022-08-04T20:41:13Z) - Rethinking Spatial Invariance of Convolutional Networks for Object
Counting [119.83017534355842]
局所連結ガウス核を用いて元の畳み込みフィルタを置き換え、密度写像の空間位置を推定する。
従来の研究から着想を得て,大規模なガウス畳み込みの近似を好意的に実装するために,翻訳不変性を伴う低ランク近似を提案する。
提案手法は,他の最先端手法を著しく上回り,物体の空間的位置の有望な学習を実現する。
論文 参考訳(メタデータ) (2022-06-10T17:51:25Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: 基地局(BSs)からの受信信号強度(RSS)のみに基づく深層学習手法
提案手法では,BSsからのRSSを,クラウド上に存在する可能性のある中央処理ユニット(CPU)にローカライズする。
推定されたBSのパスロスラジオマップを用いて、LocUNetは最先端の精度でユーザをローカライズし、無線マップの不正確性に対して高い堅牢性を享受する。
論文 参考訳(メタデータ) (2022-02-01T20:27:46Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - LOL: Lidar-Only Odometry and Localization in 3D Point Cloud Maps [0.6091702876917281]
都市部を走行するライダー搭載車両の軌道計測と位置推定の問題に対処する。
オンライン3Dポイントクラウドと事前オフラインマップとの間の幾何学的に類似した位置を検出するために,位置認識手法を適用した。
異なる長さと環境の複数のKittiデータセット上で,提案するLOLシステムの有用性を実証する。
論文 参考訳(メタデータ) (2020-07-03T10:20:53Z) - Real-time Localization Using Radio Maps [59.17191114000146]
パスロスに基づく簡易かつ効果的なローカライゼーション法を提案する。
提案手法では, 受信した信号強度を, 既知の位置を持つ基地局の集合から報告する。
論文 参考訳(メタデータ) (2020-06-09T16:51:17Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
本研究は, カテゴリーラベルのみを監督として, 正確な対象位置分布マップと対象境界を抽出する, 新たな自己強調手法を提案する。
特に、提案されたセルフエンハンスメントマップは、ILSVRC上で54.88%の最先端のローカライゼーション精度を達成する。
論文 参考訳(メタデータ) (2020-06-09T12:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。