Learnable Spatio-Temporal Map Embeddings for Deep Inertial Localization
- URL: http://arxiv.org/abs/2211.07635v1
- Date: Mon, 14 Nov 2022 18:58:21 GMT
- Title: Learnable Spatio-Temporal Map Embeddings for Deep Inertial Localization
- Authors: Dennis Melamed, Karnik Ram, Vivek Roy, Kris Kitani
- Abstract summary: We propose a data-driven prior on possible user locations in a map.
Our prior learns to encode which map regions are feasible locations for a user more accurately than previous hand-defined methods.
- Score: 21.300194809454077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Indoor localization systems often fuse inertial odometry with map information
via hand-defined methods to reduce odometry drift, but such methods are
sensitive to noise and struggle to generalize across odometry sources. To
address the robustness problem in map utilization, we propose a data-driven
prior on possible user locations in a map by combining learned spatial map
embeddings and temporal odometry embeddings. Our prior learns to encode which
map regions are feasible locations for a user more accurately than previous
hand-defined methods. This prior leads to a 49% improvement in inertial-only
localization accuracy when used in a particle filter. This result is
significant, as it shows that our relative positioning method can match the
performance of absolute positioning using bluetooth beacons. To show the
generalizability of our method, we also show similar improvements using wheel
encoder odometry.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Map-aided annotation for pole base detection [0.0]
In this paper, a 2D HD map is used to automatically annotate pole-like features in images.
In the absence of height information, the map features are represented as pole bases at the ground level.
We show how an object detector can be trained to detect a pole base.
arXiv Detail & Related papers (2024-03-04T09:23:11Z) - Improving Fuzzy-Logic based Map-Matching Method with Trajectory
Stay-Point Detection [3.093890460224435]
Most GPS trajectory datasets include stay-points irregularity, which makes map-matching algorithms mismatch trajectories to irrelevant streets.
We cluster stay-points in a trajectory dataset with DBSCAN and eliminate redundant data to improve the efficiency of the map-matching algorithm.
Our approach yields 27.39% data size reduction and 8.9% processing time reduction with the same accurate results as the previous fuzzy-logic based map-matching approach.
arXiv Detail & Related papers (2022-08-04T20:41:13Z) - Rethinking Spatial Invariance of Convolutional Networks for Object
Counting [119.83017534355842]
We try to use locally connected Gaussian kernels to replace the original convolution filter to estimate the spatial position in the density map.
Inspired by previous work, we propose a low-rank approximation accompanied with translation invariance to favorably implement the approximation of massive Gaussian convolution.
Our methods significantly outperform other state-of-the-art methods and achieve promising learning of the spatial position of objects.
arXiv Detail & Related papers (2022-06-10T17:51:25Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: A deep learning method for localization, based merely on Received Signal Strength (RSS) from Base Stations (BSs)
In the proposed method, the user to be localized reports the RSS from BSs to a Central Processing Unit ( CPU) which may be located in the cloud.
Using estimated pathloss radio maps of the BSs, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the radio maps.
arXiv Detail & Related papers (2022-02-01T20:27:46Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - LOL: Lidar-Only Odometry and Localization in 3D Point Cloud Maps [0.6091702876917281]
We deal with the problem of odometry and localization for Lidar-equipped vehicles driving in urban environments.
We apply a place recognition method to detect geometrically similar locations between the online 3D point cloud and the a priori offline map.
We demonstrate the utility of the proposed LOL system on several Kitti datasets of different lengths and environments.
arXiv Detail & Related papers (2020-07-03T10:20:53Z) - Real-time Localization Using Radio Maps [59.17191114000146]
We present a simple yet effective method for localization based on pathloss.
In our approach, the user to be localized reports the received signal strength from a set of base stations with known locations.
arXiv Detail & Related papers (2020-06-09T16:51:17Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
This work introduces a novel self-enhancement method to harvest accurate object localization maps and object boundaries with only category labels as supervision.
In particular, the proposed Self-Enhancement Maps achieve the state-of-the-art localization accuracy of 54.88% on ILSVRC.
arXiv Detail & Related papers (2020-06-09T12:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.