HigeNet: A Highly Efficient Modeling for Long Sequence Time Series
Prediction in AIOps
- URL: http://arxiv.org/abs/2211.07642v1
- Date: Sun, 13 Nov 2022 13:48:43 GMT
- Title: HigeNet: A Highly Efficient Modeling for Long Sequence Time Series
Prediction in AIOps
- Authors: Jiajia Li, Feng Tan, Cheng He, Zikai Wang, Haitao Song, Lingfei Wu,
Pengwei Hu
- Abstract summary: In this paper, we propose a highly efficient model named HigeNet to predict the long-time sequence time series.
We show that training time, resource usage and accuracy of the model are found to be significantly better than five state-of-the-art competing models.
- Score: 30.963758935255075
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Modern IT system operation demands the integration of system software and
hardware metrics. As a result, it generates a massive amount of data, which can
be potentially used to make data-driven operational decisions. In the basic
form, the decision model needs to monitor a large set of machine data, such as
CPU utilization, allocated memory, disk and network latency, and predicts the
system metrics to prevent performance degradation. Nevertheless, building an
effective prediction model in this scenario is rather challenging as the model
has to accurately capture the long-range coupling dependency in the
Multivariate Time-Series (MTS). Moreover, this model needs to have low
computational complexity and can scale efficiently to the dimension of data
available. In this paper, we propose a highly efficient model named HigeNet to
predict the long-time sequence time series. We have deployed the HigeNet on
production in the D-matrix platform. We also provide offline evaluations on
several publicly available datasets as well as one online dataset to
demonstrate the model's efficacy. The extensive experiments show that training
time, resource usage and accuracy of the model are found to be significantly
better than five state-of-the-art competing models.
Related papers
- Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
We design a hybrid edge-cloud solution that leverages the efficiency of smaller models for local processing while deferring to larger, more accurate cloud-based models when necessary.
Specifically, we propose a novel unsupervised data generation method, Dual-Model Distillation (DMD), to train a lightweight switcher model that can predict when the edge model's output is uncertain.
Experimental results on the action classification task show that our framework not only requires less computational overhead, but also improves accuracy compared to using a large model alone.
arXiv Detail & Related papers (2024-10-16T02:06:27Z) - Test Time Learning for Time Series Forecasting [1.4605709124065924]
Test-Time Training (TTT) modules consistently outperform state-of-the-art models, including the Mamba-based TimeMachine.
Our results show significant improvements in Mean Squared Error (MSE) and Mean Absolute Error (MAE)
This work sets a new benchmark for time-series forecasting and lays the groundwork for future research in scalable, high-performance forecasting models.
arXiv Detail & Related papers (2024-09-21T04:40:08Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Unified Long-Term Time-Series Forecasting Benchmark [0.6526824510982802]
We present a comprehensive dataset designed explicitly for long-term time-series forecasting.
We incorporate a collection of datasets obtained from diverse, dynamic systems and real-life records.
To determine the most effective model in diverse scenarios, we conduct an extensive benchmarking analysis using classical and state-of-the-art models.
Our findings reveal intriguing performance comparisons among these models, highlighting the dataset-dependent nature of model effectiveness.
arXiv Detail & Related papers (2023-09-27T18:59:00Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Time-series Transformer Generative Adversarial Networks [5.254093731341154]
We consider limitations posed specifically on time-series data and present a model that can generate synthetic time-series.
A model that generates synthetic time-series data has two objectives: 1) to capture the stepwise conditional distribution of real sequences, and 2) to faithfully model the joint distribution of entire real sequences.
We present TsT-GAN, a framework that capitalises on the Transformer architecture to satisfy the desiderata and compare its performance against five state-of-the-art models on five datasets.
arXiv Detail & Related papers (2022-05-23T10:04:21Z) - Real-time Human Detection Model for Edge Devices [0.0]
Convolutional Neural Networks (CNNs) have replaced traditional feature extraction and machine learning models in detection and classification tasks.
Lightweight CNN models have been recently introduced for real-time tasks.
This paper suggests a CNN-based lightweight model that can fit on a limited edge device such as Raspberry Pi.
arXiv Detail & Related papers (2021-11-20T18:42:17Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.