Impact of spiking neurons leakages and network recurrences on
event-based spatio-temporal pattern recognition
- URL: http://arxiv.org/abs/2211.07761v1
- Date: Mon, 14 Nov 2022 21:34:02 GMT
- Title: Impact of spiking neurons leakages and network recurrences on
event-based spatio-temporal pattern recognition
- Authors: Mohamed Sadek Bouanane, Dalila Cherifi, Elisabetta Chicca, Lyes Khacef
- Abstract summary: Spiking neural networks coupled with neuromorphic hardware and event-based sensors are getting increased interest for low-latency and low-power inference at the edge.
We explore the impact of synaptic and membrane leakages in spiking neurons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks coupled with neuromorphic hardware and event-based
sensors are getting increased interest for low-latency and low-power inference
at the edge. However, multiple spiking neuron models have been proposed in the
literature with different levels of biological plausibility and different
computational features and complexities. Consequently, there is a need to
define the right level of abstraction from biology in order to get the best
performance in accurate, efficient and fast inference in neuromorphic hardware.
In this context, we explore the impact of synaptic and membrane leakages in
spiking neurons. We confront three neural models with different computational
complexities using feedforward and recurrent topologies for event-based visual
and auditory pattern recognition. Our results show that, in terms of accuracy,
leakages are important when there are both temporal information in the data and
explicit recurrence in the network. In addition, leakages do not necessarily
increase the sparsity of spikes flowing in the network. We also investigate the
impact of heterogeneity in the time constant of leakages, and the results show
a slight improvement in accuracy when using data with a rich temporal
structure. These results advance our understanding of the computational role of
the neural leakages and network recurrences, and provide valuable insights for
the design of compact and energy-efficient neuromorphic hardware for embedded
systems.
Related papers
- Spiking representation learning for associative memories [0.0]
We introduce a novel artificial spiking neural network (SNN) that performs unsupervised representation learning and associative memory operations.
The architecture of our model derives from the neocortical columnar organization and combines feedforward projections for learning hidden representations and recurrent projections for forming associative memories.
arXiv Detail & Related papers (2024-06-05T08:30:11Z) - ELiSe: Efficient Learning of Sequences in Structured Recurrent Networks [1.5931140598271163]
We build a model for efficient learning sequences using only local always-on and phase-free plasticity.
We showcase the capabilities of ELiSe in a mock-up of birdsong learning, and demonstrate its flexibility with respect to parametrization.
arXiv Detail & Related papers (2024-02-26T17:30:34Z) - Neuromorphic Auditory Perception by Neural Spiketrum [27.871072042280712]
We introduce a neural spike coding model called spiketrumtemporal, to transform the time-varying analog signals into efficient spike patterns.
The model provides a sparse and efficient coding scheme with precisely controllable spike rate that facilitates training of spiking neural networks in various auditory perception tasks.
arXiv Detail & Related papers (2023-09-11T13:06:19Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Physically constrained neural networks to solve the inverse problem for
neuron models [0.29005223064604074]
Systems biology and systems neurophysiology are powerful tools for a number of key applications in the biomedical sciences.
Recent developments in the field of deep neural networks have demonstrated the possibility of formulating nonlinear, universal approximators.
arXiv Detail & Related papers (2022-09-24T12:51:15Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.