Neuromorphic Auditory Perception by Neural Spiketrum
- URL: http://arxiv.org/abs/2309.05430v1
- Date: Mon, 11 Sep 2023 13:06:19 GMT
- Title: Neuromorphic Auditory Perception by Neural Spiketrum
- Authors: Huajin Tang, Pengjie Gu, Jayawan Wijekoon, MHD Anas Alsakkal, Ziming
Wang, Jiangrong Shen, and Rui Yan
- Abstract summary: We introduce a neural spike coding model called spiketrumtemporal, to transform the time-varying analog signals into efficient spike patterns.
The model provides a sparse and efficient coding scheme with precisely controllable spike rate that facilitates training of spiking neural networks in various auditory perception tasks.
- Score: 27.871072042280712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuromorphic computing holds the promise to achieve the energy efficiency and
robust learning performance of biological neural systems. To realize the
promised brain-like intelligence, it needs to solve the challenges of the
neuromorphic hardware architecture design of biological neural substrate and
the hardware amicable algorithms with spike-based encoding and learning. Here
we introduce a neural spike coding model termed spiketrum, to characterize and
transform the time-varying analog signals, typically auditory signals, into
computationally efficient spatiotemporal spike patterns. It minimizes the
information loss occurring at the analog-to-spike transformation and possesses
informational robustness to neural fluctuations and spike losses. The model
provides a sparse and efficient coding scheme with precisely controllable spike
rate that facilitates training of spiking neural networks in various auditory
perception tasks. We further investigate the algorithm-hardware co-designs
through a neuromorphic cochlear prototype which demonstrates that our approach
can provide a systematic solution for spike-based artificial intelligence by
fully exploiting its advantages with spike-based computation.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Impact of spiking neurons leakages and network recurrences on
event-based spatio-temporal pattern recognition [0.0]
Spiking neural networks coupled with neuromorphic hardware and event-based sensors are getting increased interest for low-latency and low-power inference at the edge.
We explore the impact of synaptic and membrane leakages in spiking neurons.
arXiv Detail & Related papers (2022-11-14T21:34:02Z) - Spiking Neural Networks for Frame-based and Event-based Single Object
Localization [26.51843464087218]
Spiking neural networks have shown much promise as an energy-efficient alternative to artificial neural networks.
We propose a spiking neural network approach for single object localization trained using surrogate gradient descent.
We compare our method with similar artificial neural networks and show that our model has competitive/better performance in accuracy, against various corruptions, and has lower energy consumption.
arXiv Detail & Related papers (2022-06-13T22:22:32Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - An error-propagation spiking neural network compatible with neuromorphic
processors [2.432141667343098]
We present a spike-based learning method that approximates back-propagation using local weight update mechanisms.
We introduce a network architecture that enables synaptic weight update mechanisms to back-propagate error signals.
This work represents a first step towards the design of ultra-low power mixed-signal neuromorphic processing systems.
arXiv Detail & Related papers (2021-04-12T07:21:08Z) - Closed-Loop Neural Interfaces with Embedded Machine Learning [12.977151652608047]
We review the recent developments in embedding machine learning in neural interfaces.
We present our optimized tree-based model for low-power and memory-efficient classification of neural signal in brain implants.
Using energy-aware learning and model compression, we show that the proposed oblique trees can outperform conventional machine learning models in applications such as seizure or tremor detection and motor decoding.
arXiv Detail & Related papers (2020-10-15T14:34:08Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.