Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification
- URL: http://arxiv.org/abs/2211.07845v1
- Date: Tue, 15 Nov 2022 02:02:51 GMT
- Title: Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification
- Authors: Jinsong Chen, Boyu Li, Kun He
- Abstract summary: Graph Convolutional Network (GCN) decouples neighborhood aggregation and feature transformation in each convolutional layer.
In this paper, we propose a new paradigm of GCN, termed Neighborhood Convolutional Network (NCN)
In this way, the model could inherit the merit of decoupled GCN for aggregating neighborhood information, at the same time, develop much more powerful feature learning modules.
- Score: 12.062421384484812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The decoupled Graph Convolutional Network (GCN), a recent development of GCN
that decouples the neighborhood aggregation and feature transformation in each
convolutional layer, has shown promising performance for graph representation
learning. Existing decoupled GCNs first utilize a simple neural network (e.g.,
MLP) to learn the hidden features of the nodes, then propagate the learned
features on the graph with fixed steps to aggregate the information of
multi-hop neighborhoods. Despite effectiveness, the aggregation operation,
which requires the whole adjacency matrix as the input, is involved in the
model training, causing high training cost that hinders its potential on larger
graphs. On the other hand, due to the independence of node attributes as the
input, the neural networks used in decoupled GCNs are very simple, and advanced
techniques cannot be applied to the modeling. To this end, we further liberate
the aggregation operation from the decoupled GCN and propose a new paradigm of
GCN, termed Neighborhood Convolutional Network (NCN), that utilizes the
neighborhood aggregation result as the input, followed by a special
convolutional neural network tailored for extracting expressive node
representations from the aggregation input. In this way, the model could
inherit the merit of decoupled GCN for aggregating neighborhood information, at
the same time, develop much more powerful feature learning modules. A training
strategy called mask training is incorporated to further boost the model
performance. Extensive results demonstrate the effectiveness of our model for
the node classification task on diverse homophilic graphs and heterophilic
graphs.
Related papers
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Non-Recursive Graph Convolutional Networks [33.459371861932574]
We propose a novel architecture named Non-Recursive Graph Convolutional Network (NRGCN) to improve both the training efficiency and the learning performance of GCNs.
NRGCN represents different hops of neighbors for each node based on inner-layer aggregation and layer-independent sampling.
In this way, each node can be directly represented by concatenating the information extracted independently from each hop of its neighbors.
arXiv Detail & Related papers (2021-05-09T08:12:18Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - An Uncoupled Training Architecture for Large Graph Learning [20.784230322205232]
We present Node2Grids, a flexible uncoupled training framework for embedding graph data into grid-like data.
By ranking each node's influence through degree, Node2Grids selects the most influential first-order as well as second-order neighbors with central node fusion information.
For further improving the efficiency of downstream tasks, a simple CNN-based neural network is employed to capture the significant information from the mapped grid-like data.
arXiv Detail & Related papers (2020-03-21T11:49:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.