Personalized Federated Learning with Multi-branch Architecture
- URL: http://arxiv.org/abs/2211.07931v3
- Date: Tue, 21 Nov 2023 13:59:55 GMT
- Title: Personalized Federated Learning with Multi-branch Architecture
- Authors: Junki Mori, Tomoyuki Yoshiyama, Furukawa Ryo, Isamu Teranishi
- Abstract summary: Federated learning (FL) enables multiple clients to collaboratively train models without requiring clients to reveal their raw data to each other.
We propose a new PFL method (pFedMB) using multi-branch architecture, which achieves personalization by splitting each layer of a neural network into multiple branches and assigning client-specific weights to each branch.
We experimentally show that pFedMB performs better than the state-of-the-art PFL methods using the CIFAR10 and CIFAR100 datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a decentralized machine learning technique that
enables multiple clients to collaboratively train models without requiring
clients to reveal their raw data to each other. Although traditional FL trains
a single global model with average performance among clients, statistical data
heterogeneity across clients has resulted in the development of personalized FL
(PFL), which trains personalized models with good performance on each client's
data. A key challenge with PFL is how to facilitate clients with similar data
to collaborate more in a situation where each client has data from complex
distribution and cannot determine one another's distribution. In this paper, we
propose a new PFL method (pFedMB) using multi-branch architecture, which
achieves personalization by splitting each layer of a neural network into
multiple branches and assigning client-specific weights to each branch. We also
design an aggregation method to improve the communication efficiency and the
model performance, with which each branch is globally updated with weighted
averaging by client-specific weights assigned to the branch. pFedMB is simple
but effective in facilitating each client to share knowledge with similar
clients by adjusting the weights assigned to each branch. We experimentally
show that pFedMB performs better than the state-of-the-art PFL methods using
the CIFAR10 and CIFAR100 datasets.
Related papers
- Multi-Level Additive Modeling for Structured Non-IID Federated Learning [54.53672323071204]
We train models organized in a multi-level structure, called Multi-level Additive Models (MAM)'', for better knowledge-sharing across heterogeneous clients.
In federated MAM (FeMAM), each client is assigned to at most one model per level and its personalized prediction sums up the outputs of models assigned to it across all levels.
Experiments show that FeMAM surpasses existing clustered FL and personalized FL methods in various non-IID settings.
arXiv Detail & Related papers (2024-05-26T07:54:53Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - Adaptive Federated Learning with Auto-Tuned Clients [8.868957280690832]
Federated learning (FL) is a distributed machine learning framework where the global model of a central server is trained via multiple collaborative steps by participating clients without sharing their data.
We propose $Delta$-SGD, a simple step size rule for SGD that enables each client to use its own step size by adapting to the local smoothness of the function each client is optimizing.
arXiv Detail & Related papers (2023-06-19T23:46:42Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Federated Noisy Client Learning [105.00756772827066]
Federated learning (FL) collaboratively aggregates a shared global model depending on multiple local clients.
Standard FL methods ignore the noisy client issue, which may harm the overall performance of the aggregated model.
We propose Federated Noisy Client Learning (Fed-NCL), which is a plug-and-play algorithm and contains two main components.
arXiv Detail & Related papers (2021-06-24T11:09:17Z) - Unifying Distillation with Personalization in Federated Learning [1.8262547855491458]
Federated learning (FL) is a decentralized privacy-preserving learning technique in which clients learn a joint collaborative model through a central aggregator without sharing their data.
In this setting, all clients learn a single common predictor (FedAvg), which does not generalize well on each client's local data due to the statistical data heterogeneity among clients.
In this paper, we address this problem with PersFL, a two-stage personalized learning algorithm.
In the first stage, PersFL finds the optimal teacher model of each client during the FL training phase. In the second stage, PersFL distills the useful knowledge from
arXiv Detail & Related papers (2021-05-31T17:54:29Z) - Personalized Federated Learning by Structured and Unstructured Pruning
under Data Heterogeneity [3.291862617649511]
We propose a new approach for obtaining a personalized model from a client-level objective.
To realize this personalization, we leverage finding a small subnetwork for each client.
arXiv Detail & Related papers (2021-05-02T22:10:46Z) - FedNS: Improving Federated Learning for collaborative image
classification on mobile clients [22.980223900446997]
Federated Learning (FL) is a paradigm that aims to support loosely connected clients in learning a global model.
We propose a new approach, termed Federated Node Selection (FedNS), for the server's global model aggregation in the FL setting.
We show with experiments from multiple datasets and networks that FedNS can consistently achieve improved performance over FedAvg.
arXiv Detail & Related papers (2021-01-20T06:45:46Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
We propose an alternative to federated learning, where each client federates with other relevant clients to obtain a stronger model per client-specific objectives.
We do not assume knowledge of underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest.
Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
arXiv Detail & Related papers (2020-12-15T19:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.