Personalized Federated Learning via Learning Dynamic Graphs
- URL: http://arxiv.org/abs/2503.05474v1
- Date: Fri, 07 Mar 2025 14:47:03 GMT
- Title: Personalized Federated Learning via Learning Dynamic Graphs
- Authors: Ziran Zhou, Guanyu Gao, Xiaohu Wu, Yan Lyu,
- Abstract summary: We propose a novel method, Personalized Federated Learning with Graph Attention Network (pFedGAT)<n>pFedGAT captures the latent graph structure between clients and dynamically determines the importance of other clients for each client, enabling fine-grained control over the aggregation process.<n>We evaluate pFedGAT across multiple data distribution scenarios, comparing it with twelve state of the art methods on three datasets.
- Score: 4.569473641235369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized Federated Learning (PFL) aims to train a personalized model for each client that is tailored to its local data distribution, learning fails to perform well on individual clients due to variations in their local data distributions. Most existing PFL methods focus on personalizing the aggregated global model for each client, neglecting the fundamental aspect of federated learning: the regulation of how client models are aggregated. Additionally, almost all of them overlook the graph structure formed by clients in federated learning. In this paper, we propose a novel method, Personalized Federated Learning with Graph Attention Network (pFedGAT), which captures the latent graph structure between clients and dynamically determines the importance of other clients for each client, enabling fine-grained control over the aggregation process. We evaluate pFedGAT across multiple data distribution scenarios, comparing it with twelve state of the art methods on three datasets: Fashion MNIST, CIFAR-10, and CIFAR-100, and find that it consistently performs well.
Related papers
- Personalized Federated Knowledge Graph Embedding with Client-Wise Relation Graph [49.66272783945571]
We propose Personalized Federated knowledge graph Embedding with client-wise relation graph.
PFedEG learns personalized supplementary knowledge for each client by amalgamating entity embedding from its neighboring clients.
We conduct extensive experiments on four benchmark datasets to evaluate our method against state-of-the-art models.
arXiv Detail & Related papers (2024-06-17T17:44:53Z) - Multi-Level Additive Modeling for Structured Non-IID Federated Learning [54.53672323071204]
We train models organized in a multi-level structure, called Multi-level Additive Models (MAM)'', for better knowledge-sharing across heterogeneous clients.
In federated MAM (FeMAM), each client is assigned to at most one model per level and its personalized prediction sums up the outputs of models assigned to it across all levels.
Experiments show that FeMAM surpasses existing clustered FL and personalized FL methods in various non-IID settings.
arXiv Detail & Related papers (2024-05-26T07:54:53Z) - FedSheafHN: Personalized Federated Learning on Graph-structured Data [22.825083541211168]
We propose a model called FedSheafHN, which embeds each client's local subgraph into a server-constructed collaboration graph.
Our model improves the integration and interpretation of complex client characteristics.
It also has fast model convergence and effective new clients generalization.
arXiv Detail & Related papers (2024-05-25T04:51:41Z) - FAM: fast adaptive federated meta-learning [10.980548731600116]
We propose a fast adaptive federated meta-learning (FAM) framework for collaboratively learning a single global model.
A skeleton network is grown on each client to train a personalized model by learning additional client-specific parameters from local data.
The personalized client models outperformed the locally trained models, demonstrating the efficacy of the FAM mechanism.
arXiv Detail & Related papers (2023-08-26T22:54:45Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Personalized Federated Learning with Multi-branch Architecture [0.0]
Federated learning (FL) enables multiple clients to collaboratively train models without requiring clients to reveal their raw data to each other.
We propose a new PFL method (pFedMB) using multi-branch architecture, which achieves personalization by splitting each layer of a neural network into multiple branches and assigning client-specific weights to each branch.
We experimentally show that pFedMB performs better than the state-of-the-art PFL methods using the CIFAR10 and CIFAR100 datasets.
arXiv Detail & Related papers (2022-11-15T06:30:57Z) - Unifying Distillation with Personalization in Federated Learning [1.8262547855491458]
Federated learning (FL) is a decentralized privacy-preserving learning technique in which clients learn a joint collaborative model through a central aggregator without sharing their data.
In this setting, all clients learn a single common predictor (FedAvg), which does not generalize well on each client's local data due to the statistical data heterogeneity among clients.
In this paper, we address this problem with PersFL, a two-stage personalized learning algorithm.
In the first stage, PersFL finds the optimal teacher model of each client during the FL training phase. In the second stage, PersFL distills the useful knowledge from
arXiv Detail & Related papers (2021-05-31T17:54:29Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
We propose an alternative to federated learning, where each client federates with other relevant clients to obtain a stronger model per client-specific objectives.
We do not assume knowledge of underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest.
Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
arXiv Detail & Related papers (2020-12-15T19:30:29Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.