Bayesian Federated Neural Matching that Completes Full Information
- URL: http://arxiv.org/abs/2211.08010v1
- Date: Tue, 15 Nov 2022 09:47:56 GMT
- Title: Bayesian Federated Neural Matching that Completes Full Information
- Authors: Peng Xiao, Samuel Cheng
- Abstract summary: Federated learning is a machine learning paradigm where locally trained models are distilled into a global model.
We propose a novel approach that overcomes this flaw by introducing a Kullback-Leibler divergence penalty at each iteration.
- Score: 2.6566593102111473
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Federated learning is a contemporary machine learning paradigm where locally
trained models are distilled into a global model. Due to the intrinsic
permutation invariance of neural networks, Probabilistic Federated Neural
Matching (PFNM) employs a Bayesian nonparametric framework in the generation
process of local neurons, and then creates a linear sum assignment formulation
in each alternative optimization iteration. But according to our theoretical
analysis, the optimization iteration in PFNM omits global information from
existing. In this study, we propose a novel approach that overcomes this flaw
by introducing a Kullback-Leibler divergence penalty at each iteration. The
effectiveness of our approach is demonstrated by experiments on both image
classification and semantic segmentation tasks.
Related papers
- Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up [0.0]
We present a novel approach to accelerate the Bayesian inference process, focusing specifically on the nested sampling algorithms.
Our proposed method utilizes the power of deep learning, employing feedforward neural networks to approximate the likelihood function dynamically during the Bayesian inference process.
The implementation integrates with nested sampling algorithms and has been thoroughly evaluated using both simple cosmological dark energy models and diverse observational datasets.
arXiv Detail & Related papers (2024-05-06T09:14:58Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Federated Learning as Variational Inference: A Scalable Expectation
Propagation Approach [66.9033666087719]
This paper extends the inference view and describes a variational inference formulation of federated learning.
We apply FedEP on standard federated learning benchmarks and find that it outperforms strong baselines in terms of both convergence speed and accuracy.
arXiv Detail & Related papers (2023-02-08T17:58:11Z) - Classified as unknown: A novel Bayesian neural network [0.0]
We develop a new efficient Bayesian learning algorithm for fully connected neural networks.
We generalize the algorithm for a single perceptron for binary classification in citeH to multi-layer perceptrons for multi-class classification.
arXiv Detail & Related papers (2023-01-31T04:27:09Z) - On the Convergence of Shallow Neural Network Training with Randomly
Masked Neurons [11.119895959906085]
Given a dense shallow neural network, we focus on creating, training, and combining randomly selected functions.
By analyzing $i)$ theworks' neural kernel, $ii)$ the surrogate functions' gradient, and $iii)$ how we sample and combine the surrogate functions, we prove linear convergence rate of the training error.
For fixed neuron selection probability, the error term decreases as we increase the number of surrogate models, and increases as we increase the number of local training steps.
arXiv Detail & Related papers (2021-12-05T19:51:14Z) - Probabilistic Federated Learning of Neural Networks Incorporated with
Global Posterior Information [4.067903810030317]
In federated learning, models trained on local clients are distilled into a global model.
We propose a new method which extends the Probabilistic Federated Neural Matching.
Our new method outperforms popular state-of-the-art federated learning methods in both single communication round and additional communication rounds situation.
arXiv Detail & Related papers (2020-12-06T03:54:58Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z) - DessiLBI: Exploring Structural Sparsity of Deep Networks via
Differential Inclusion Paths [45.947140164621096]
We propose a new approach based on differential inclusions of inverse scale spaces.
We show that DessiLBI unveils "winning tickets" in early epochs.
arXiv Detail & Related papers (2020-07-04T04:40:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.