Classified as unknown: A novel Bayesian neural network
- URL: http://arxiv.org/abs/2301.13401v1
- Date: Tue, 31 Jan 2023 04:27:09 GMT
- Title: Classified as unknown: A novel Bayesian neural network
- Authors: Tianbo Yang and Tianshuo Yang
- Abstract summary: We develop a new efficient Bayesian learning algorithm for fully connected neural networks.
We generalize the algorithm for a single perceptron for binary classification in citeH to multi-layer perceptrons for multi-class classification.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish estimations for the parameters of the output distribution for
the softmax activation function using the probit function. As an application,
we develop a new efficient Bayesian learning algorithm for fully connected
neural networks, where training and predictions are performed within the
Bayesian inference framework in closed-form. This approach allows sequential
learning and requires no computationally expensive gradient calculation and
Monte Carlo sampling. Our work generalizes the Bayesian algorithm for a single
perceptron for binary classification in \cite{H} to multi-layer perceptrons for
multi-class classification.
Related papers
- Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up [0.0]
We present a novel approach to accelerate the Bayesian inference process, focusing specifically on the nested sampling algorithms.
Our proposed method utilizes the power of deep learning, employing feedforward neural networks to approximate the likelihood function dynamically during the Bayesian inference process.
The implementation integrates with nested sampling algorithms and has been thoroughly evaluated using both simple cosmological dark energy models and diverse observational datasets.
arXiv Detail & Related papers (2024-05-06T09:14:58Z) - Pruning a neural network using Bayesian inference [1.776746672434207]
Neural network pruning is a highly effective technique aimed at reducing the computational and memory demands of large neural networks.
We present a novel approach to pruning neural networks utilizing Bayesian inference, which can seamlessly integrate into the training procedure.
arXiv Detail & Related papers (2023-08-04T16:34:06Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Bayesian Federated Neural Matching that Completes Full Information [2.6566593102111473]
Federated learning is a machine learning paradigm where locally trained models are distilled into a global model.
We propose a novel approach that overcomes this flaw by introducing a Kullback-Leibler divergence penalty at each iteration.
arXiv Detail & Related papers (2022-11-15T09:47:56Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
We present Prior-Data Fitted Networks (PFNs)
PFNs leverage in-context learning in large-scale machine learning techniques to approximate a large set of posteriors.
We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems.
arXiv Detail & Related papers (2021-12-20T13:07:39Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Attentive Gaussian processes for probabilistic time-series generation [4.94950858749529]
We propose a computationally efficient attention-based network combined with the Gaussian process regression to generate real-valued sequence.
We develop a block-wise training algorithm to allow mini-batch training of the network while the GP is trained using full-batch.
The algorithm has been proved to converge and shows comparable, if not better, quality of the found solution.
arXiv Detail & Related papers (2021-02-10T01:19:15Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains by processing through binary neural dynamic activations.
This paper proposes to leverage multiple compartments that sample independent spiking signals while sharing synaptic weights.
The key idea is to use these signals to obtain more accurate statistical estimates of the log-likelihood training criterion, as well as of its gradient.
arXiv Detail & Related papers (2021-02-05T16:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.