Neural Bayesian Network Understudy
- URL: http://arxiv.org/abs/2211.08243v1
- Date: Tue, 15 Nov 2022 15:56:51 GMT
- Title: Neural Bayesian Network Understudy
- Authors: Paloma Rabaey, Cedric De Boom, Thomas Demeester
- Abstract summary: We show that a neural network can be trained to output conditional probabilities, providing approximately the same functionality as a Bayesian Network.
We propose two training strategies that allow encoding the independence relations inferred from a given causal structure into the neural network.
- Score: 13.28673601999793
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Networks may be appealing for clinical decision-making due to their
inclusion of causal knowledge, but their practical adoption remains limited as
a result of their inability to deal with unstructured data. While neural
networks do not have this limitation, they are not interpretable and are
inherently unable to deal with causal structure in the input space. Our goal is
to build neural networks that combine the advantages of both approaches.
Motivated by the perspective to inject causal knowledge while training such
neural networks, this work presents initial steps in that direction. We
demonstrate how a neural network can be trained to output conditional
probabilities, providing approximately the same functionality as a Bayesian
Network. Additionally, we propose two training strategies that allow encoding
the independence relations inferred from a given causal structure into the
neural network. We present initial results in a proof-of-concept setting,
showing that the neural model acts as an understudy to its Bayesian Network
counterpart, approximating its probabilistic and causal properties.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Consistency of Neural Networks with Regularization [0.0]
This paper proposes the general framework of neural networks with regularization and prove its consistency.
Two types of activation functions: hyperbolic function(Tanh) and rectified linear unit(ReLU) have been taken into consideration.
arXiv Detail & Related papers (2022-06-22T23:33:39Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Bayesian Neural Networks: Essentials [0.6091702876917281]
It is nontrivial to understand, design and train Bayesian neural networks due to their complexities.
Deep neural networks makes it redundant, and costly, to account for uncertainty for a large number of successive layers.
Hybrid Bayesian neural networks, which use few probabilistic layers judicially positioned in the networks, provide a practical solution.
arXiv Detail & Related papers (2021-06-22T13:54:17Z) - Provably Training Neural Network Classifiers under Fairness Constraints [70.64045590577318]
We show that overparametrized neural networks could meet the constraints.
Key ingredient of building a fair neural network classifier is establishing no-regret analysis for neural networks.
arXiv Detail & Related papers (2020-12-30T18:46:50Z) - A biologically plausible neural network for local supervision in
cortical microcircuits [17.00937011213428]
We derive an algorithm for training a neural network which avoids explicit error and backpropagation.
Our algorithm maps onto a neural network that bears a remarkable resemblance to the connectivity structure and learning rules of the cortex.
arXiv Detail & Related papers (2020-11-30T17:35:22Z) - Bayesian Neural Networks [0.0]
We show how errors in prediction by neural networks can be obtained in principle, and provide the two favoured methods for characterising these errors.
We will also describe how both of these methods have substantial pitfalls when put into practice.
arXiv Detail & Related papers (2020-06-02T09:43:00Z) - A neural network model of perception and reasoning [0.0]
We show that a simple set of biologically consistent organizing principles confer these capabilities to neuronal networks.
We implement these principles in a novel machine learning algorithm, based on concept construction instead of optimization, to design deep neural networks that reason with explainable neuron activity.
arXiv Detail & Related papers (2020-02-26T06:26:04Z) - ResiliNet: Failure-Resilient Inference in Distributed Neural Networks [56.255913459850674]
We introduce ResiliNet, a scheme for making inference in distributed neural networks resilient to physical node failures.
Failout simulates physical node failure conditions during training using dropout, and is specifically designed to improve the resiliency of distributed neural networks.
arXiv Detail & Related papers (2020-02-18T05:58:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.