Offline Policy Evaluation for Reinforcement Learning with Adaptively Collected Data
- URL: http://arxiv.org/abs/2306.14063v2
- Date: Wed, 1 May 2024 00:42:22 GMT
- Title: Offline Policy Evaluation for Reinforcement Learning with Adaptively Collected Data
- Authors: Sunil Madhow, Dan Qiao, Ming Yin, Yu-Xiang Wang,
- Abstract summary: We develop theory for the TMIS Offline Policy Evaluation (OPE) estimator.
We derive high-probability, instance-dependent bounds on its estimation error.
We also recover minimax-optimal offline learning in the adaptive setting.
- Score: 28.445166861907495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing theoretical guarantees on the sample complexity of offline RL methods is an important step towards making data-hungry RL algorithms practically viable. Currently, most results hinge on unrealistic assumptions about the data distribution -- namely that it comprises a set of i.i.d. trajectories collected by a single logging policy. We consider a more general setting where the dataset may have been gathered adaptively. We develop theory for the TMIS Offline Policy Evaluation (OPE) estimator in this generalized setting for tabular MDPs, deriving high-probability, instance-dependent bounds on its estimation error. We also recover minimax-optimal offline learning in the adaptive setting. Finally, we conduct simulations to empirically analyze the behavior of these estimators under adaptive and non-adaptive regimes.
Related papers
- Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
Policy evaluation via Monte Carlo simulation is at the core of many MC Reinforcement Learning (RL) algorithms.
We propose as a quality index a surrogate of the mean squared error of a return estimator that uses trajectories of different lengths.
We present an adaptive algorithm called Robust and Iterative Data collection strategy Optimization (RIDO)
arXiv Detail & Related papers (2024-10-17T11:47:56Z) - Learning Goal-Conditioned Policies from Sub-Optimal Offline Data via Metric Learning [22.174803826742963]
We address the problem of learning optimal behavior from sub-optimal datasets for goal-conditioned offline reinforcement learning.
We propose the use of metric learning to approximate the optimal value function for goal-conditioned offline RL problems.
We show that our method estimates optimal behaviors from severely sub-optimal offline datasets without suffering from out-of-distribution estimation errors.
arXiv Detail & Related papers (2024-02-16T16:46:53Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
offline policy learning is aimed at learning decision-making policies using existing datasets of trajectories without collecting additional data.
We argue that when a dataset is dominated by suboptimal trajectories, state-of-the-art offline RL algorithms do not substantially improve over the average return of trajectories in the dataset.
We present a realization of the sampling strategy and an algorithm that can be used as a plug-and-play module in standard offline RL algorithms.
arXiv Detail & Related papers (2023-10-06T17:58:14Z) - Hundreds Guide Millions: Adaptive Offline Reinforcement Learning with
Expert Guidance [74.31779732754697]
We propose a novel plug-in approach named Guided Offline RL (GORL)
GORL employs a guiding network, along with only a few expert demonstrations, to adaptively determine the relative importance of the policy improvement and policy constraint for every sample.
Experiments on various environments suggest that GORL can be easily installed on most offline RL algorithms with statistically significant performance improvements.
arXiv Detail & Related papers (2023-09-04T08:59:04Z) - Harnessing Mixed Offline Reinforcement Learning Datasets via Trajectory
Weighting [29.21380944341589]
We show that state-of-the-art offline RL algorithms are overly restrained by low-return trajectories and fail to exploit trajectories to the fullest.
This reweighted sampling strategy may be combined with any offline RL algorithm.
We empirically show that while CQL, IQL, and TD3+BC achieve only a part of this potential policy improvement, these same algorithms fully exploit the dataset.
arXiv Detail & Related papers (2023-06-22T17:58:02Z) - Offline Reinforcement Learning with Additional Covering Distributions [0.0]
We study learning optimal policies from a logged dataset, i.e., offline RL, with function approximation.
We show that sample-efficient offline RL for general MDPs is possible with only a partial coverage dataset and weak realizable function classes.
arXiv Detail & Related papers (2023-05-22T03:31:03Z) - Revisiting the Linear-Programming Framework for Offline RL with General
Function Approximation [24.577243536475233]
offline reinforcement learning (RL) concerns pursuing an optimal policy for sequential decision-making from a pre-collected dataset.
Recent theoretical progress has focused on developing sample-efficient offline RL algorithms with various relaxed assumptions on data coverage and function approximators.
We revisit the linear-programming framework for offline RL, and advance the existing results in several aspects.
arXiv Detail & Related papers (2022-12-28T15:28:12Z) - Offline Reinforcement Learning with Adaptive Behavior Regularization [1.491109220586182]
offline reinforcement learning (RL) defines a sample-efficient learning paradigm, where a policy is learned from static and previously collected datasets.
We propose a novel approach, which we refer to as adaptive behavior regularization (ABR)
ABR enables the policy to adaptively adjust its optimization objective between cloning and improving over the policy used to generate the dataset.
arXiv Detail & Related papers (2022-11-15T15:59:11Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
We study a pessimistic variant of Q-learning in the context of finite-horizon Markov decision processes.
A variance-reduced pessimistic Q-learning algorithm is proposed to achieve near-optimal sample complexity.
arXiv Detail & Related papers (2022-02-28T15:39:36Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Is Pessimism Provably Efficient for Offline RL? [104.00628430454479]
We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori.
We propose a pessimistic variant of the value iteration algorithm (PEVI), which incorporates an uncertainty quantifier as the penalty function.
arXiv Detail & Related papers (2020-12-30T09:06:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.