A stochastic quantum Krylov protocol with double factorized Hamiltonians
- URL: http://arxiv.org/abs/2211.08274v1
- Date: Tue, 15 Nov 2022 16:27:41 GMT
- Title: A stochastic quantum Krylov protocol with double factorized Hamiltonians
- Authors: Nicholas H. Stair, Cristian L. Cortes, Robert M. Parrish, Jeffrey
Cohn, Mario Motta
- Abstract summary: We propose a class of randomized quantum Krylov diagonalization (rQKD) algorithms capable of solving the eigenstate estimation problem with modest quantum resource requirements.
Compared to previous real-time evolution quantum Krylov subspace methods, our approach expresses the time evolution operator, $e-ihatH tau$, as a linear combination of unitaries and subsequently uses a sampling procedure to reduce circuit depth requirements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a class of randomized quantum Krylov diagonalization (rQKD)
algorithms capable of solving the eigenstate estimation problem with modest
quantum resource requirements. Compared to previous real-time evolution quantum
Krylov subspace methods, our approach expresses the time evolution operator,
$e^{-i\hat{H} \tau}$, as a linear combination of unitaries and subsequently
uses a stochastic sampling procedure to reduce circuit depth requirements.
While our methodology applies to any Hamiltonian with fast-forwardable
subcomponents, we focus on its application to the explicitly double-factorized
electronic-structure Hamiltonian. To demonstrate the potential of the proposed
rQKD algorithm, we provide numerical benchmarks for a variety of molecular
systems with circuit-based statevector simulators, achieving ground state
energy errors of less than 1~kcal~mol$^{-1}$ with circuit depths orders of
magnitude shallower than those required for low-rank deterministic
Trotter-Suzuki decompositions.
Related papers
- Projective Quantum Eigensolver with Generalized Operators [0.0]
We develop a methodology for determining the generalized operators in terms of a closed form residual equations in the PQE framework.
With the application on several molecular systems, we have demonstrated our ansatz achieves similar accuracy to the (disentangled) UCC with singles, doubles and triples.
arXiv Detail & Related papers (2024-10-21T15:40:22Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Ground state preparation and energy estimation on early fault-tolerant
quantum computers via quantum eigenvalue transformation of unitary matrices [3.1952399274829775]
We develop a tool called quantum eigenvalue transformation of unitary matrices with reals (QET-U)
This leads to a simple quantum algorithm that outperforms all previous algorithms with a comparable circuit structure for estimating the ground state energy.
We demonstrate the performance of the algorithm using IBM Qiskit for the transverse field Ising model.
arXiv Detail & Related papers (2022-04-12T17:11:40Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum Krylov subspace algorithms for ground and excited state energy
estimation [0.0]
Quantum Krylov subspace diagonalization (QKSD) algorithms provide a low-cost alternative to the conventional quantum phase estimation algorithm.
We show that a wide class of Hamiltonians relevant to condensed matter physics and quantum chemistry contain symmetries that can be exploited to avoid the use of the Hadamard test.
We develop a unified theory of quantum Krylov subspace algorithms and present three new quantum-classical algorithms for the ground and excited-state energy estimation problems.
arXiv Detail & Related papers (2021-09-14T17:56:53Z) - Quantum Filter Diagonalization with Double-Factorized Hamiltonians [0.0]
We demonstrate a method that merges the quantum filter diagonalization (QFD) approach for hybrid quantum/classical solution of the Schr"odinger equation.
We explore the use of sparse "compressed" double factorization (C-DF) truncation of the Hamiltonian within the time-propagation elements of QFD.
arXiv Detail & Related papers (2021-04-18T21:06:58Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Low-depth Hamiltonian Simulation by Adaptive Product Formula [3.050399782773013]
Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer.
Here, we propose an adaptive approach to construct a low-depth time evolution circuit.
Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
arXiv Detail & Related papers (2020-11-10T18:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.