Low-depth Hamiltonian Simulation by Adaptive Product Formula
- URL: http://arxiv.org/abs/2011.05283v3
- Date: Tue, 12 Mar 2024 19:01:16 GMT
- Title: Low-depth Hamiltonian Simulation by Adaptive Product Formula
- Authors: Zi-Jian Zhang, Jinzhao Sun, Xiao Yuan, Man-Hong Yung
- Abstract summary: Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer.
Here, we propose an adaptive approach to construct a low-depth time evolution circuit.
Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
- Score: 3.050399782773013
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Various Hamiltonian simulation algorithms have been proposed to efficiently
study the dynamics of quantum systems on a quantum computer. The existing
algorithms generally approximate the time evolution operators, which may need a
deep quantum circuit that is beyond the capability of near-term noisy quantum
devices. Here, focusing on the time evolution of a fixed input quantum state,
we propose an adaptive approach to construct a low-depth time evolution
circuit. By introducing a measurable quantifier that characterizes the
simulation error, we use an adaptive strategy to learn the shallow quantum
circuit that minimizes that error. We numerically test the adaptive method with
electronic Hamiltonians of the $\mathrm{H_2O}$ and $\mathrm{H_4}$ molecules,
and the transverse field Ising model with random coefficients. Compared to the
first-order Suzuki-Trotter product formula, our method can significantly reduce
the circuit depth (specifically the number of two-qubit gates) by around two
orders while maintaining the simulation accuracy. We show applications of the
method in simulating many-body dynamics and solving energy spectra with the
quantum Krylov algorithm. Our work sheds light on practical Hamiltonian
simulation with noisy-intermediate-scale-quantum devices.
Related papers
- Scalable simulation of non-equilibrium quantum dynamics via classically optimised unitary circuits [0.0]
We show how to optimise unitary brickwall circuits to approximate quantum time evolution operators.
We demonstrate that, for various three-body Hamiltonians, our approach produces quantum circuits that can outperform Trotterization in both their accuracy and the quantum circuit depth needed to implement the dynamics.
We also explain how to choose an optimal time step that minimises the combined errors of the quantum device and the brickwall circuit approximation.
arXiv Detail & Related papers (2023-12-21T19:00:35Z) - Reducing circuit depth in adaptive variational quantum algorithms via
effective Hamiltonian theories [8.24048506727803]
We introduce a new transformation in the form of a product of a linear combination of excitation operators to construct the effective Hamiltonian with finite terms.
The effective Hamiltonian defined with this new transformation is incorporated into the adaptive variational quantum algorithms to maintain constant-size quantum circuits.
arXiv Detail & Related papers (2022-01-23T09:38:46Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Logical Abstractions for Noisy Variational Quantum Algorithm Simulation [25.515765956985188]
Existing quantum circuit simulators do not address the common traits of variational algorithms.
We present a quantum circuit simulation toolchain based on logical abstractions targeted for simulating variational algorithms.
arXiv Detail & Related papers (2021-03-31T17:20:13Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
We introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher-order multi-product formulas on the other.
Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification.
Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth.
arXiv Detail & Related papers (2021-01-19T19:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.