論文の概要: Classifying text using machine learning models and determining
conversation drift
- arxiv url: http://arxiv.org/abs/2211.08365v1
- Date: Tue, 15 Nov 2022 18:09:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 13:24:02.118724
- Title: Classifying text using machine learning models and determining
conversation drift
- Title(参考訳): 機械学習モデルによるテキストの分類と会話の漂流判定
- Authors: Chaitanya Chadha, Vandit Gupta, Deepak Gupta, Ashish Khanna
- Abstract要約: 様々な種類のテキストの分析は、意味的意味と関連性の両方を理解するのに有用である。
テキスト分類は文書を分類する方法である。
コンピュータテキスト分類と自然言語処理を組み合わせて、テキストを集約して分析する。
- 参考スコア(独自算出の注目度): 4.785406121053965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text classification helps analyse texts for semantic meaning and relevance,
by mapping the words against this hierarchy. An analysis of various types of
texts is invaluable to understanding both their semantic meaning, as well as
their relevance. Text classification is a method of categorising documents. It
combines computer text classification and natural language processing to
analyse text in aggregate. This method provides a descriptive categorization of
the text, with features like content type, object field, lexical
characteristics, and style traits. In this research, the authors aim to use
natural language feature extraction methods in machine learning which are then
used to train some of the basic machine learning models like Naive Bayes,
Logistic Regression, and Support Vector Machine. These models are used to
detect when a teacher must get involved in a discussion when the lines go
off-topic.
- Abstract(参考訳): テキスト分類は、単語をこの階層にマッピングすることで、意味の意味と関連性についてテキストを分析するのに役立つ。
様々な種類のテキストの分析は、意味的意味と関連性の両方を理解するのに有用である。
テキスト分類は文書を分類する方法である。
コンピュータテキスト分類と自然言語処理を組み合わせて、テキストを集約して分析する。
この方法は、コンテンツタイプ、オブジェクトフィールド、語彙特性、スタイル特性などの特徴を備えた、テキストの記述的分類を提供する。
本研究では,自然言語特徴抽出手法を用いて,自然言語ベイズ,ロジスティック回帰,サポートベクターマシンなどの基本的な機械学習モデルを学習することを目的としている。
これらのモデルは、教師が議論にいつ関与しなければならないかを検出するために使われます。
関連論文リスト
- Scene Graph Generation with Role-Playing Large Language Models [50.252588437973245]
オープン語彙シーングラフ生成(OVSGG)に対する現在のアプローチは、CLIPのような視覚言語モデルを使用している。
シーン固有の記述に基づくOVSGGフレームワークであるSDSGGを提案する。
対象と対象の複雑な相互作用を捉えるために,相互視覚アダプタと呼ばれる軽量モジュールを提案する。
論文 参考訳(メタデータ) (2024-10-20T11:40:31Z) - Evaluating Text Classification Robustness to Part-of-Speech Adversarial Examples [0.6445605125467574]
逆の例は意思決定プロセスを騙すために設計された入力であり、人間には理解できないことを意図している。
テキストベースの分類システムでは、入力の変更(テキストの文字列)は常に認識可能である。
テキストベースの逆数例の質を向上させるためには、入力テキストのどの要素に注目する価値があるかを知る必要がある。
論文 参考訳(メタデータ) (2024-08-15T18:33:54Z) - Text Classification: A Perspective of Deep Learning Methods [0.0679877553227375]
本稿では,テキスト分類作業に必要な重要なステップを含む,深層学習に基づくテキスト分類アルゴリズムを提案する。
論文の最後には、異なる深層学習テキスト分類法を比較し、要約する。
論文 参考訳(メタデータ) (2023-09-24T21:49:51Z) - Description-Based Text Similarity [59.552704474862004]
我々は、その内容の抽象的な記述に基づいて、テキストを検索する必要性を特定する。
そこで本研究では,近隣の標準探索で使用する場合の精度を大幅に向上する代替モデルを提案する。
論文 参考訳(メタデータ) (2023-05-21T17:14:31Z) - Textual Entailment Recognition with Semantic Features from Empirical
Text Representation [60.31047947815282]
テキストが仮説を包含するのは、仮説の真の価値がテキストに従う場合に限る。
本稿では,テキストと仮説のテキストの包含関係を同定する新しい手法を提案する。
本手法では,テキスト・ハイブリッド・ペア間の意味的含意関係を識別できる要素ワイド・マンハッタン距離ベクトルベースの特徴を用いる。
論文 参考訳(メタデータ) (2022-10-18T10:03:51Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - ShufText: A Simple Black Box Approach to Evaluate the Fragility of Text
Classification Models [0.0]
CNN、LSTM、Transformersに基づくディープラーニングアプローチは、テキスト分類における事実上のアプローチである。
これらのシステムは、分類に有用なテキストに現れる重要な単語に過度に依存していることを示す。
論文 参考訳(メタデータ) (2021-01-30T15:18:35Z) - Neural Deepfake Detection with Factual Structure of Text [78.30080218908849]
テキストのディープフェイク検出のためのグラフベースモデルを提案する。
我々のアプローチは、ある文書の事実構造をエンティティグラフとして表現する。
本モデルでは,機械生成テキストと人文テキストの事実構造の違いを識別することができる。
論文 参考訳(メタデータ) (2020-10-15T02:35:31Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
本研究は,テキスト分析における主観性と一般的文脈依存性を考慮した新しい手法を提案する。
単語間の類似度を用いて、ベンチマーク中の要素の相対的関連性を抽出することができる。
この方法は、主観的評価がテキストの相対値や意味を理解するために関係しているすべてのケースに適用できる。
論文 参考訳(メタデータ) (2020-05-12T21:26:04Z) - Context based Text-generation using LSTM networks [0.5330240017302621]
提案モデルでは,与えられた入力単語の集合とコンテキストベクトルのテキストを生成するように訓練されている。
生成したテキストのコンテキストに対するセマンティック・クローズネスに基づいて評価を行う。
論文 参考訳(メタデータ) (2020-04-30T18:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。