論文の概要: Simulating noise on a quantum processor: interactions between a qubit
and resonant two-level system bath
- arxiv url: http://arxiv.org/abs/2211.08535v2
- Date: Wed, 7 Jun 2023 23:25:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 20:22:38.332130
- Title: Simulating noise on a quantum processor: interactions between a qubit
and resonant two-level system bath
- Title(参考訳): 量子プロセッサ上のノイズのシミュレーション:量子ビットと共鳴2レベルシステムバスの相互作用
- Authors: Yujin Cho, Dipti Jasrasaria, Keith G. Ray, Daniel M. Tennant, Vincenzo
Lordi, Jonathan L DuBois, and Yaniv J. Rosen
- Abstract要約: 我々は、標準モデル、量子ビット内の電場分布、オープン量子系力学を組み込んだモデルを構築する。
最も強く結合された200個のTLSは、クォービットエネルギー緩和時間を正確に記述できる。
我々の研究は、量子ビットコヒーレンス時間を改善した将来の量子プロセッサ設計のためのガイダンスを提供することができる。
- 参考スコア(独自算出の注目度): 0.3769303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Material defects fundamentally limit the coherence times of superconducting
qubits, and manufacturing completely defect-free devices is not yet possible.
Therefore, understanding the interactions between defects and a qubit in a real
quantum processor design is essential. We build a model that incorporates the
standard tunneling model, the electric field distributions in the qubit, and
open quantum system dynamics, and draws from the current understanding of
two-level system (TLS) theory. Specifically, we start with one million TLSs
distributed on the surface of a qubit and pick the 200 systems that are most
strongly coupled to the qubit. We then perform a full Lindbladian simulation
that explicitly includes the coherent coupling between the qubit and the TLS
bath to model the time dependent density matrix of resonant TLS defects and the
qubit. We find that the 200 most strongly coupled TLSs can accurately describe
the qubit energy relaxation time. This work confirms that resonant TLSs located
in areas where the electric field is strong can significantly affect the qubit
relaxation time, even if they are located far from the Josephson junction.
Similarly, a strongly-coupled resonant TLS located in the Josephson junction
does not guarantee a reduced qubit relaxation time if a more strongly coupled
TLS is far from the Josephson junction. In addition to the coupling strengths
between TLSs and the qubit, the model predicts that the geometry of the device
and the TLS relaxation time play a significant role in qubit dynamics. Our work
can provide guidance for future quantum processor designs with improved qubit
coherence times.
- Abstract(参考訳): 材料欠陥は基本的に超伝導量子ビットのコヒーレンス時間を制限し、完全に欠陥のないデバイスを製造することは不可能である。
したがって、実際の量子プロセッサ設計において欠陥と量子ビットの間の相互作用を理解することが不可欠である。
我々は、標準的なトンネルモデル、量子ビット内の電場分布、オープン量子系力学を組み込んだモデルを構築し、現在の2レベルシステム(TLS)理論の理解から導出する。
具体的には、キュービット表面に分散された100万のTLSから始まり、キュービットに最も強く結合された200のシステムを選択する。
次に、共振TLS欠陥の時間依存性密度行列をモデル化するために、キュービットとTLS浴の間のコヒーレント結合を明示的に含むリンドブラディアンシミュレーションを行う。
最も強く結合された200個のTLSは、クォービットエネルギー緩和時間を正確に記述できる。
この研究は、電場が強い領域にある共鳴TLSが、ジョセフソン接合から遠くに位置するとしても、クビット緩和時間に大きな影響を与えることを確認した。
同様に、ジョセフソン接合にある強結合共振TLSは、より強く結合されたTLSがジョセフソン接合から遠く離れている場合、量子ビット緩和時間の短縮を保証しない。
TLSと量子ビットの結合強度に加えて、このモデルはデバイスとTLS緩和時間の幾何学が量子ビット力学において重要な役割を果たすことを予測している。
我々の研究は、量子ビットコヒーレンス時間を改善した将来の量子プロセッサ設計のためのガイダンスを提供することができる。
関連論文リスト
- Non-Markovian dynamics of a superconducting qubit in a phononic bandgap [1.4392875769180546]
現在の超伝導量子ビットは、大きなデバイスフットプリントを使用することで2レベルシステム(TLS)による消散を低減する。
この研究は、超伝導量子ビット-TLS相互作用を工学するためにフォニックスを用いた新しいプラットフォームを導入する。
論文 参考訳(メタデータ) (2023-12-02T05:08:32Z) - Phonon engineering of atomic-scale defects in superconducting quantum
circuits [5.596598303356484]
トンネル2レベルシステム(TLS)は、量子コンピューティングの分野において、さらに関連性を高めている。
我々は,ナノスケールエンジニアリングによりTLSの特性を直接修正する新しいアプローチを採っている。
我々の研究は、TLSの詳細な調査とコヒーレントな制御の道を開く。
論文 参考訳(メタデータ) (2023-10-05T22:17:09Z) - Quantum defects from single surface exhibit strong mutual interactions [0.0]
2段階のシステム欠陥は、量子情報科学の主要なデコヒーレンス源となっている。
共振器の真空ギャップコンデンサ内における準均一場を用いた金属-空気界面の表面TLSについて検討した。
論文 参考訳(メタデータ) (2023-02-01T08:53:10Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
本研究では,Landau-Zenerモデルにおける過渡ダイナミクスを,Landau-Zener速度の関数として検討する。
我々の実験は、工学的なボソニックモードスペクトルに結合した量子ビットを用いたより複雑なシミュレーションの道を開いた。
論文 参考訳(メタデータ) (2022-11-26T15:04:11Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
超伝導回路は量子コンピューティングの主要なプラットフォームである。
アモルファス酸化物層内の電荷変動器は、低周波1/f$の電荷ノイズと高周波誘電損失の両方に寄与する。
本稿では,TLS雑音スペクトル密度の工学的手法により,有害な影響を軽減することを提案する。
論文 参考訳(メタデータ) (2022-06-21T18:37:38Z) - Experimentally revealing anomalously large dipoles in a quantum-circuit
dielectric [50.591267188664666]
眼鏡に固有の2レベルシステム(TLS)は、現代の多くの量子デバイスにおいてデコヒーレンスを誘導する。
2つの異なるTLSのアンサンブルの存在を示し、フォノンと弱く強く相互作用する。
その結果, アモルファス固体の低温特性に新たな光を放つことができた。
論文 参考訳(メタデータ) (2021-10-20T19:42:22Z) - Non-Markovian Effects of Two-Level Systems in a Niobium Coaxial
Resonator with a Single-Photon Lifetime of 10 ms [0.0]
2レベル系(TLS)のコヒーレンスは、同軸クアッドウェーブ共振器のリングダウンダイナミクスを正確に記述する必要がある。
共振器場とTLS間のコヒーレント弾性散乱による空洞崩壊に対する長期的影響を観察した。
このモデルは内部品質因子の温度依存性を正確に予測する。
論文 参考訳(メタデータ) (2021-02-19T16:36:18Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
フリップフロップ量子ビットは、シリコン中の反平行ドナー結合電子とドナー核スピンを持つ状態において符号化される。
相互作用する電子スピンと核スピンによって形成されるマルチレベルシステムについて検討する。
低周波雑音下で高速かつロバストな単一ビットゲートを生成する最適制御方式を提案する。
論文 参考訳(メタデータ) (2021-01-27T18:37:30Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
トンネル2層系(TLS)は超伝導量子ビットなどのマイクロファブリック量子デバイスにおいて重要である。
本稿では,薄膜として堆積した任意の材料に個々のTLSを特徴付ける手法を提案する。
提案手法は, トンネル欠陥の構造を解明するために, 量子材料分光の道を開く。
論文 参考訳(メタデータ) (2020-11-29T09:57:50Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
我々は原子ソリトンジョセフソン接合(SJJ)素子の量子特性を確立する。
量子領域におけるSJJ-モデルは、全粒子数の2乗に比例した有効非線形強度のため、特異な特徴を示すことを示す。
得られた量子状態は、絡み合ったフォック状態の小さな成分が存在する場合、凝縮物からの粒子損失がほとんどないことに抵抗性があることが示されている。
論文 参考訳(メタデータ) (2020-11-26T09:26:19Z) - Two-level systems in superconducting quantum devices due to trapped
quasiparticles [0.0]
非平衡準粒子は超伝導量子回路において量子ビット緩和を誘導できることを示す。
以上の結果から, 捕捉されたQPはクビット緩和を誘発する可能性が示唆された。
論文 参考訳(メタデータ) (2020-04-06T08:38:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。