論文の概要: Asynchronous Bayesian Learning over a Network
- arxiv url: http://arxiv.org/abs/2211.08603v1
- Date: Wed, 16 Nov 2022 01:21:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 16:42:50.568699
- Title: Asynchronous Bayesian Learning over a Network
- Title(参考訳): ネットワーク上の非同期ベイズ学習
- Authors: Kinjal Bhar, He Bai, Jemin George, Carl Busart
- Abstract要約: 本稿では,ネットワーク化されたエージェントが生データを共有せずに分散ベイズ学習を行うための非同期データ融合モデルを提案する。
アルゴリズムは、ランダムに選択されたエージェントのペアがパラメータサンプリングのために調整されていないランゲヴィンダイナミクスを使用するゴシップベースのアプローチを用いる。
本稿では,ゴシップエージェント間の通信をさらに削減するイベントトリガー機構を提案する。
- 参考スコア(独自算出の注目度): 18.448653247778143
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a practical asynchronous data fusion model for networked agents to
perform distributed Bayesian learning without sharing raw data. Our algorithm
uses a gossip-based approach where pairs of randomly selected agents employ
unadjusted Langevin dynamics for parameter sampling. We also introduce an
event-triggered mechanism to further reduce communication between gossiping
agents. These mechanisms drastically reduce communication overhead and help
avoid bottlenecks commonly experienced with distributed algorithms. In
addition, the reduced link utilization by the algorithm is expected to increase
resiliency to occasional link failure. We establish mathematical guarantees for
our algorithm and demonstrate its effectiveness via numerical experiments.
- Abstract(参考訳): 本稿では,ネットワークエージェントが生データを共有することなく分散ベイズ学習を行うための,実用的な非同期データ融合モデルを提案する。
本アルゴリズムは,ランダムに選択されたエージェントのペアがパラメータサンプリングに不調整ランジュバンダイナミクスを用いるゴシップに基づくアプローチを用いる。
また,ゴシピングエージェント間のコミュニケーションをさらに低減するためのイベントトリガー機構も導入する。
これらのメカニズムは通信のオーバーヘッドを大幅に削減し、分散アルゴリズムで一般的なボトルネックを回避するのに役立つ。
また,アルゴリズムによるリンク使用率の低下は,リンク障害に対する回復力を高めることが期待される。
アルゴリズムの数学的保証を確立し,その効果を数値実験により実証する。
関連論文リスト
- Convergence Visualizer of Decentralized Federated Distillation with
Reduced Communication Costs [3.2098126952615442]
フェデレートラーニング(FL)は、データ共有を必要とせずに協調学習を実現し、プライバシーの漏洩を防ぐ。
本研究では,CMFD の未解決課題として,(1) 通信コストの削減と(2) モデル収束の可視化の2つを解決した。
論文 参考訳(メタデータ) (2023-12-19T07:23:49Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
フェデレートラーニング(FL)により、分散クライアントは、生データを互いに共有することなく、機械学習モデルを協調的にトレーニングできる。
モデルのサイズが大きくなるにつれて、送信帯域の制限によるトレーニングのレイテンシが低下し、個人情報が劣化すると同時に、差分プライバシ(DP)保護を使用する。
我々は、収束性能を犠牲にすることなく、トレーニング効率を向上させるために、FLフレームワーク無線チャネルのスペース化を提案する。
論文 参考訳(メタデータ) (2023-04-09T05:21:15Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
分散エージェントのネットワークによって達成可能な性能を導出し,通信制約や回帰問題を解消し,適応的に解決する。
エージェントによって最適化に必要なパラメータをオンラインで学習できる最適化アロケーション戦略を考案する。
論文 参考訳(メタデータ) (2023-04-07T13:41:08Z) - Federated Learning for Heterogeneous Bandits with Unobserved Contexts [0.0]
我々は、未知のコンテキストを持つ多腕コンテキスト包帯のフェデレーション問題について検討する。
線形パラメタライズされた報酬関数に対して,除去に基づくアルゴリズムを提案し,後悔の束縛を証明した。
論文 参考訳(メタデータ) (2023-03-29T22:06:24Z) - Scalable Hierarchical Over-the-Air Federated Learning [3.8798345704175534]
この研究は、干渉とデバイスデータの不均一性の両方を扱うために設計された新しい2段階学習手法を導入する。
本稿では,提案アルゴリズムの収束を導出するための包括的数学的アプローチを提案する。
干渉とデータの不均一性にもかかわらず、提案アルゴリズムは様々なパラメータに対して高い学習精度を実現する。
論文 参考訳(メタデータ) (2022-11-29T12:46:37Z) - Communication-Efficient Distributionally Robust Decentralized Learning [23.612400109629544]
分散学習アルゴリズムは、相互接続されたエッジデバイスにデータと計算資源を共有する権限を与える。
そこで本研究では,単一分散ループ降下/上昇アルゴリズム(ADGDA)を提案し,その基礎となるミニマックス最適化問題を解く。
論文 参考訳(メタデータ) (2022-05-31T09:00:37Z) - Finite-Time Consensus Learning for Decentralized Optimization with
Nonlinear Gossiping [77.53019031244908]
本稿では,非線形ゴシップ(NGO)に基づく分散学習フレームワークを提案する。
コミュニケーション遅延とランダム化チャットが学習にどう影響するかを解析することで,実践的なバリエーションの導出が可能となる。
論文 参考訳(メタデータ) (2021-11-04T15:36:25Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。