Deep learning of spatial densities in inhomogeneous correlated quantum
systems
- URL: http://arxiv.org/abs/2211.09050v1
- Date: Wed, 16 Nov 2022 17:10:07 GMT
- Title: Deep learning of spatial densities in inhomogeneous correlated quantum
systems
- Authors: Alex Blania, Sandro Herbig, Fabian Dechent, Evert van Nieuwenburg and
Florian Marquardt
- Abstract summary: We show that we can learn to predict densities using convolutional neural networks trained on random potentials.
We show that our approach can handle well the interplay of interference and interactions and the behaviour of models with phase transitions in inhomogeneous situations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has made important headway in helping to improve the
treatment of quantum many-body systems. A domain of particular relevance are
correlated inhomogeneous systems. What has been missing so far is a general,
scalable deep-learning approach that would enable the rapid prediction of
spatial densities for strongly correlated systems in arbitrary potentials. In
this work, we present a straightforward scheme, where we learn to predict
densities using convolutional neural networks trained on random potentials.
While we demonstrate this approach in 1D and 2D lattice models using data from
numerical techniques like Quantum Monte Carlo, it is directly applicable as
well to training data obtained from experimental quantum simulators. We train
networks that can predict the densities of multiple observables simultaneously
and that can predict for a whole class of many-body lattice models, for
arbitrary system sizes. We show that our approach can handle well the interplay
of interference and interactions and the behaviour of models with phase
transitions in inhomogeneous situations, and we also illustrate the ability to
solve inverse problems, finding a potential for a desired density.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Neural Incremental Data Assimilation [8.817223931520381]
We introduce a deep learning approach where the physical system is modeled as a sequence of coarse-to-fine Gaussian prior distributions parametrized by a neural network.
This allows us to define an assimilation operator, which is trained in an end-to-end fashion to minimize the reconstruction error.
We illustrate our approach on chaotic dynamical physical systems with sparse observations, and compare it to traditional variational data assimilation methods.
arXiv Detail & Related papers (2024-06-21T11:42:55Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Fluctuation based interpretable analysis scheme for quantum many-body
snapshots [0.0]
Microscopically understanding and classifying phases of matter is at the heart of strongly-correlated quantum physics.
Here, we combine confusion learning with correlation convolutional neural networks, which yields fully interpretable phase detection.
Our work opens new directions in interpretable quantum image processing being sensible to long-range order.
arXiv Detail & Related papers (2023-04-12T17:59:59Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Imaginary components of out-of-time correlators and information
scrambling for navigating the learning landscape of a quantum machine
learning model [0.0]
We analytically illustrate that hitherto unexplored imaginary components of out-of-time correlators can provide unprecedented insight into the information scrambling capacity of a graph neural network.
Such an analysis demystifies the training of quantum machine learning models by unraveling how quantum information is scrambled through such a network.
arXiv Detail & Related papers (2022-08-29T06:17:28Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.