論文の概要: Experimental Analysis of Machine Learning Techniques for Finding Search
Radius in Locality Sensitive Hashing
- arxiv url: http://arxiv.org/abs/2211.09093v1
- Date: Wed, 16 Nov 2022 18:19:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 16:50:29.396285
- Title: Experimental Analysis of Machine Learning Techniques for Finding Search
Radius in Locality Sensitive Hashing
- Title(参考訳): 局所感性ハッシュにおける探索半径探索のための機械学習手法の実験的検討
- Authors: Omid Jafari and Parth Nagarkar
- Abstract要約: 局所感性ハッシュ (Locality Sensitive Hashing, LSH) は、高次元空間の近接探索技術として最も一般的なものの一つである。
機械学習を利用するために、半径最適化局所感性ハッシュ(roLSH)と呼ばれる改良されたLSHベースのインデックス構造が提案されている。
- 参考スコア(独自算出の注目度): 0.9137554315375919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding similar data in high-dimensional spaces is one of the important tasks
in multimedia applications. Approaches introduced to find exact searching
techniques often use tree-based index structures which are known to suffer from
the curse of the dimensionality problem that limits their performance.
Approximate searching techniques prefer performance over accuracy and they
return good enough results while achieving a better performance. Locality
Sensitive Hashing (LSH) is one of the most popular approximate nearest neighbor
search techniques for high-dimensional spaces. One of the most time-consuming
processes in LSH is to find the neighboring points in the projected spaces. An
improved LSH-based index structure, called radius-optimized Locality Sensitive
Hashing (roLSH) has been proposed to utilize Machine Learning and efficiently
find these neighboring points; thus, further improve the overall performance of
LSH. In this paper, we extend roLSH by experimentally studying the effect of
different types of famous Machine Learning techniques on overall performance.
We compare ten regression techniques on four real-world datasets and show that
Neural Network-based techniques are the best fit to be used in roLSH as their
accuracy and performance trade-off are the best compared to the other
techniques.
- Abstract(参考訳): 高次元空間で同様のデータを見つけることはマルチメディアアプリケーションにおいて重要なタスクの1つである。
正確な探索手法を見つけるために導入されたアプローチは、しばしば、その性能を制限する次元問題の呪いに苦しむことが知られている木に基づく索引構造を用いる。
近似探索技術は精度よりも性能を優先し、性能を向上しながら十分な結果を返す。
局所性センシティブハッシュ(lsh)は、高次元空間に対する最も一般的な近似近接探索手法の一つである。
LSHにおける最も時間を要するプロセスの1つは、射影空間に隣接する点を見つけることである。
半径最適化局所感性ハッシュ(roLSH)と呼ばれる改良されたLSHベースのインデックス構造が提案され、機械学習を利用してこれらの隣接点を効率的に見つけることができる。
本稿では,様々な機械学習手法が全体のパフォーマンスに与える影響を実験的に検討することにより,rolshを拡張した。
実世界の4つのデータセットにおける10の回帰手法を比較し、ニューラルネットワークベースの手法がRoLSHの精度と性能のトレードオフに最も適していることを示す。
関連論文リスト
- Early Exit Strategies for Approximate k-NN Search in Dense Retrieval [10.48678957367324]
アーリーエグジットのための最先端のA-kNNを構築し,忍耐の概念に基づく教師なし手法を提案する。
我々は,A-kNNの効率を最大5倍の高速化で向上すると同時に,無視可能な効率損失を達成できることを示す。
論文 参考訳(メタデータ) (2024-08-09T10:17:07Z) - Retrieval with Learned Similarities [2.729516456192901]
最先端の検索アルゴリズムは、学習された類似点に移行した。
そこで本研究では,Mixture-of-Logits (MoL) を実証的に実現し,多様な検索シナリオにおいて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-07-22T08:19:34Z) - ParlayANN: Scalable and Deterministic Parallel Graph-Based Approximate
Nearest Neighbor Search Algorithms [5.478671305092084]
本稿では,ParlayANNについて紹介する。ParlayANNは決定論的および並列グラフに基づく近接探索アルゴリズムのライブラリである。
我々は、数十億のデータセットにスケールする4つの最先端グラフベースのANNSアルゴリズムに対して、新しい並列実装を開発する。
論文 参考訳(メタデータ) (2023-05-07T19:28:23Z) - Constructing Tree-based Index for Efficient and Effective Dense
Retrieval [26.706985694158384]
JTRは、TReeベースのインデックスとクエリエンコーディングの合同最適化の略である。
我々は、木に基づくインデックスとクエリエンコーダをエンドツーエンドにトレーニングするために、新しい統合されたコントラスト学習損失を設計する。
実験結果から,JTRは高いシステム効率を維持しつつ,検索性能が向上することが示された。
論文 参考訳(メタデータ) (2023-04-24T09:25:39Z) - MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data
Challenge [110.7678032481059]
第1回機械学習重力波探索モックデータチャレンジ(MLGWSC-1)の結果を示す。
この課題のために、参加するグループは、より現実的な雑音に埋め込まれた複雑さと持続期間が増大する二元ブラックホールの融合から重力波信号を特定する必要があった。
この結果から,現在の機械学習検索アルゴリズムは,限られたパラメータ領域においてすでに十分敏感である可能性が示唆された。
論文 参考訳(メタデータ) (2022-09-22T16:44:59Z) - Shapley-NAS: Discovering Operation Contribution for Neural Architecture
Search [96.20505710087392]
ニューラルアーキテクチャ探索のための演算寄与度(Shapley-NAS)を評価するためのShapley値に基づく手法を提案する。
提案手法は,光探索コストに比例して最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-20T14:41:49Z) - ZARTS: On Zero-order Optimization for Neural Architecture Search [94.41017048659664]
微分可能なアーキテクチャサーチ (DARTS) は、NASの高効率性のため、一般的なワンショットパラダイムである。
この作業はゼロオーダーの最適化に変わり、上記の近似を強制せずに探索するための新しいNASスキームであるZARTSを提案する。
特に、12ベンチマークの結果は、DARTSの性能が低下するZARTSの顕著な堅牢性を検証する。
論文 参考訳(メタデータ) (2021-10-10T09:35:15Z) - Web image search engine based on LSH index and CNN Resnet50 [0.0]
そこで我々は、CBIRシステムを実装するためにLocality Sensitive Hashing(LSH)インデックスを採用した。
具体的には、画像から深い特徴を抽出するために転送学習技術を利用する。
次に、前述の2つのCNNの上に構築された、完全に接続されたディープニューラルネットワークを試す。
論文 参考訳(メタデータ) (2021-08-20T14:43:41Z) - Learning to Hash Robustly, with Guarantees [79.68057056103014]
本稿では,理論的アルゴリズムと本質的に一致する最悪ケース保証を持つハミング空間のためのNSアルゴリズムを設計する。
理論的にも実用的にも、与えられたデータセットに対してアルゴリズムが最適化できる能力を評価する。
我々のアルゴリズムは、MNISTおよびImageNetデータセットに対する最悪のパフォーマンスのクエリを、1.8倍と2.1倍の精度でリコールする。
論文 参考訳(メタデータ) (2021-08-11T20:21:30Z) - ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse
Coding [86.40042104698792]
スパース符号問題としてニューラルアーキテクチャ探索を定式化する。
実験では、CIFAR-10の2段階法では、検索にわずか0.05GPUしか必要としない。
本手法は,CIFAR-10とImageNetの両方において,評価時間のみのコストで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-10-13T04:34:24Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
本稿では,GANアーキテクチャ探索のための強化学習に基づくニューラルアーキテクチャ探索手法を提案する。
鍵となる考え方は、よりスムーズなアーキテクチャサンプリングのためのマルコフ決定プロセス(MDP)として、GANアーキテクチャ探索問題を定式化することである。
我々は,従来の政策によって生成されたサンプルを効率的に活用する,非政治的なGANアーキテクチャ探索アルゴリズムを利用する。
論文 参考訳(メタデータ) (2020-07-17T18:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。