aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving
with Long-Range Perception
- URL: http://arxiv.org/abs/2211.09445v3
- Date: Fri, 22 Sep 2023 09:57:03 GMT
- Title: aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving
with Long-Range Perception
- Authors: Tam\'as Matuszka, Iv\'an Barton, \'Ad\'am Butykai, P\'eter Hajas,
D\'avid Kiss, Domonkos Kov\'acs, S\'andor Kuns\'agi-M\'at\'e, P\'eter
Lengyel, G\'abor N\'emeth, Levente Pet\H{o}, Dezs\H{o} Ribli, D\'avid Szeghy,
Szabolcs Vajna, B\'alint Varga
- Abstract summary: This dataset consists of 176 scenes with synchronized and calibrated LiDAR, camera, and radar sensors covering a 360-degree field of view.
The collected data was captured in highway, urban, and suburban areas during daytime, night, and rain.
We trained unimodal and multimodal baseline models for 3D object detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autonomous driving is a popular research area within the computer vision
research community. Since autonomous vehicles are highly safety-critical,
ensuring robustness is essential for real-world deployment. While several
public multimodal datasets are accessible, they mainly comprise two sensor
modalities (camera, LiDAR) which are not well suited for adverse weather. In
addition, they lack far-range annotations, making it harder to train neural
networks that are the base of a highway assistant function of an autonomous
vehicle. Therefore, we introduce a multimodal dataset for robust autonomous
driving with long-range perception. The dataset consists of 176 scenes with
synchronized and calibrated LiDAR, camera, and radar sensors covering a
360-degree field of view. The collected data was captured in highway, urban,
and suburban areas during daytime, night, and rain and is annotated with 3D
bounding boxes with consistent identifiers across frames. Furthermore, we
trained unimodal and multimodal baseline models for 3D object detection. Data
are available at \url{https://github.com/aimotive/aimotive_dataset}.
Related papers
- HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians.
Our method efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin.
Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages.
arXiv Detail & Related papers (2022-12-15T11:15:14Z) - IDD-3D: Indian Driving Dataset for 3D Unstructured Road Scenes [79.18349050238413]
Preparation and training of deploy-able deep learning architectures require the models to be suited to different traffic scenarios.
An unstructured and complex driving layout found in several developing countries such as India poses a challenge to these models.
We build a new dataset, IDD-3D, which consists of multi-modal data from multiple cameras and LiDAR sensors with 12k annotated driving LiDAR frames.
arXiv Detail & Related papers (2022-10-23T23:03:17Z) - Ithaca365: Dataset and Driving Perception under Repeated and Challenging
Weather Conditions [0.0]
We present a new dataset to enable robust autonomous driving via a novel data collection process.
The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS.
We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects.
arXiv Detail & Related papers (2022-08-01T22:55:32Z) - DOLPHINS: Dataset for Collaborative Perception enabled Harmonious and
Interconnected Self-driving [19.66714697653504]
Vehicle-to-Everything (V2X) network has enabled collaborative perception in autonomous driving.
The lack of datasets has severely blocked the development of collaborative perception algorithms.
We release DOLPHINS: dataset for cOllaborative Perception enabled Harmonious and INterconnected Self-driving.
arXiv Detail & Related papers (2022-07-15T17:07:07Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - How to Build a Curb Dataset with LiDAR Data for Autonomous Driving [11.632427050596728]
Video cameras and 3D LiDARs are mounted on autonomous vehicles for curb detection.
Camera-based curb detection methods suffer from challenging illumination conditions.
A dataset with curb annotations or an efficient curb labeling approach, hence, is of high demand.
arXiv Detail & Related papers (2021-10-08T08:32:37Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
A point cloud is a dense compilation of spatial data in 3D coordinates.
We propose a PointNet-based approach for 3D Multi-Object Tracking (MOT)
arXiv Detail & Related papers (2021-06-03T05:36:39Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - The NEOLIX Open Dataset for Autonomous Driving [1.4091801425319965]
We present the NEOLIX dataset and its applica-tions in the autonomous driving area.
Our dataset includes about 30,000 frames with point cloud la-bels, and more than 600k 3D bounding boxes withannotations.
arXiv Detail & Related papers (2020-11-27T02:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.