Ithaca365: Dataset and Driving Perception under Repeated and Challenging
Weather Conditions
- URL: http://arxiv.org/abs/2208.01166v1
- Date: Mon, 1 Aug 2022 22:55:32 GMT
- Title: Ithaca365: Dataset and Driving Perception under Repeated and Challenging
Weather Conditions
- Authors: Carlos A. Diaz-Ruiz (1), Youya Xia (1), Yurong You (1), Jose Nino (1),
Junan Chen (1), Josephine Monica (1), Xiangyu Chen (1), Katie Luo (1), Yan
Wang (1), Marc Emond (1), Wei-Lun Chao (2), Bharath Hariharan (1), Kilian Q.
Weinberger (1), Mark Campbell (1) ((1) Cornell University, (2) The Ohio State
University)
- Abstract summary: We present a new dataset to enable robust autonomous driving via a novel data collection process.
The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS.
We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in perception for self-driving cars have accelerated in recent years
due to the availability of large-scale datasets, typically collected at
specific locations and under nice weather conditions. Yet, to achieve the high
safety requirement, these perceptual systems must operate robustly under a wide
variety of weather conditions including snow and rain. In this paper, we
present a new dataset to enable robust autonomous driving via a novel data
collection process - data is repeatedly recorded along a 15 km route under
diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time
(day/night), and traffic conditions (pedestrians, cyclists and cars). The
dataset includes images and point clouds from cameras and LiDAR sensors, along
with high-precision GPS/INS to establish correspondence across routes. The
dataset includes road and object annotations using amodal masks to capture
partial occlusions and 3D bounding boxes. We demonstrate the uniqueness of this
dataset by analyzing the performance of baselines in amodal segmentation of
road and objects, depth estimation, and 3D object detection. The repeated
routes opens new research directions in object discovery, continual learning,
and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/
Related papers
- SemanticSpray++: A Multimodal Dataset for Autonomous Driving in Wet Surface Conditions [10.306226508237348]
The SemanticSpray++ dataset provides labels for camera, LiDAR, and radar data of highway-like scenarios in wet surface conditions.
By labeling all three sensor modalities, the dataset offers a comprehensive test bed for analyzing the performance of different perception methods.
arXiv Detail & Related papers (2024-06-14T11:46:48Z) - SUPS: A Simulated Underground Parking Scenario Dataset for Autonomous
Driving [41.221988979184665]
SUPS is a simulated dataset for underground automatic parking.
It supports multiple tasks with multiple sensors and multiple semantic labels aligned with successive images.
We also evaluate the state-of-the-art SLAM algorithms and perception models on our dataset.
arXiv Detail & Related papers (2023-02-25T02:59:12Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2 (AV2) is a collection of three datasets for perception and forecasting research in the self-driving domain.
The Lidar dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose.
The Motion Forecasting dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene.
arXiv Detail & Related papers (2023-01-02T00:36:22Z) - aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving
with Long-Range Perception [0.0]
This dataset consists of 176 scenes with synchronized and calibrated LiDAR, camera, and radar sensors covering a 360-degree field of view.
The collected data was captured in highway, urban, and suburban areas during daytime, night, and rain.
We trained unimodal and multimodal baseline models for 3D object detection.
arXiv Detail & Related papers (2022-11-17T10:19:59Z) - IDD-3D: Indian Driving Dataset for 3D Unstructured Road Scenes [79.18349050238413]
Preparation and training of deploy-able deep learning architectures require the models to be suited to different traffic scenarios.
An unstructured and complex driving layout found in several developing countries such as India poses a challenge to these models.
We build a new dataset, IDD-3D, which consists of multi-modal data from multiple cameras and LiDAR sensors with 12k annotated driving LiDAR frames.
arXiv Detail & Related papers (2022-10-23T23:03:17Z) - Rope3D: TheRoadside Perception Dataset for Autonomous Driving and
Monocular 3D Object Detection Task [48.555440807415664]
We present the first high-diversity challenging Roadside Perception 3D dataset- Rope3D from a novel view.
The dataset consists of 50k images and over 1.5M 3D objects in various scenes.
We propose to leverage the geometry constraint to solve the inherent ambiguities caused by various sensors, viewpoints.
arXiv Detail & Related papers (2022-03-25T12:13:23Z) - Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception [59.2014692323323]
Small, far-away, or highly occluded objects are particularly challenging because there is limited information in the LiDAR point clouds for detecting them.
We propose a novel, end-to-end trainable Hindsight framework to extract contextual information from past data.
We show that this framework is compatible with most modern 3D detection architectures and can substantially improve their average precision on multiple autonomous driving datasets.
arXiv Detail & Related papers (2022-03-22T00:58:27Z) - How to Build a Curb Dataset with LiDAR Data for Autonomous Driving [11.632427050596728]
Video cameras and 3D LiDARs are mounted on autonomous vehicles for curb detection.
Camera-based curb detection methods suffer from challenging illumination conditions.
A dataset with curb annotations or an efficient curb labeling approach, hence, is of high demand.
arXiv Detail & Related papers (2021-10-08T08:32:37Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - 4Seasons: A Cross-Season Dataset for Multi-Weather SLAM in Autonomous
Driving [48.588254700810474]
We present a novel dataset covering seasonal and challenging perceptual conditions for autonomous driving.
Among others, it enables research on visual odometry, global place recognition, and map-based re-localization tracking.
arXiv Detail & Related papers (2020-09-14T12:31:20Z) - DAWN: Vehicle Detection in Adverse Weather Nature Dataset [4.09920839425892]
We present a new dataset consisting of real-world images collected under various adverse weather conditions called DAWN.
The dataset comprises a collection of 1000 images from real-traffic environments, which are divided into four sets of weather conditions: fog, snow, rain and sandstorms.
This data helps interpreting effects caused by the adverse weather conditions on the performance of vehicle detection systems.
arXiv Detail & Related papers (2020-08-12T15:48:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.