An efficient combination of quantum error correction and authentication
- URL: http://arxiv.org/abs/2211.09686v1
- Date: Thu, 17 Nov 2022 17:25:39 GMT
- Title: An efficient combination of quantum error correction and authentication
- Authors: Yfke Dulek, Garazi Muguruza and Florian Speelman
- Abstract summary: We study whether it can be done more efficiently by combining the two functionalities in a single code.
We show that the threshold code needs polylogarithmically fewer qubits to achieve the same level of security and robustness.
- Score: 1.1602089225841632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When sending quantum information over a channel, we want to ensure that the
message remains intact. Quantum error correction and quantum authentication
both aim to protect (quantum) information, but approach this task from two very
different directions: error-correcting codes protect against probabilistic
channel noise and are meant to be very robust against small errors, while
authentication codes prevent adversarial attacks and are designed to be very
sensitive against any error, including small ones.
In practice, when sending an authenticated state over a noisy channel, one
would have to wrap it in an error-correcting code to counterbalance the
sensitivity of the underlying authentication scheme. We study the question of
whether this can be done more efficiently by combining the two functionalities
in a single code. To illustrate the potential of such a combination, we design
the threshold code, a modification of the trap authentication code which
preserves that code's authentication properties, but which is naturally robust
against depolarizing channel noise. We show that the threshold code needs
polylogarithmically fewer qubits to achieve the same level of security and
robustness, compared to the naive composition of the trap code with any
concatenated CSS code. We believe our analysis opens the door to combining more
general error-correction and authentication codes, which could improve the
practicality of the resulting scheme.
Related papers
- Analysis of Maximum Threshold and Quantum Security for Fault-Tolerant
Encoding and Decoding Scheme Base on Steane Code [10.853582091917236]
The original Steane code is not fault-tolerant because the CNOT gates in an encoded block may cause error propagation.
We first propose a fault-tolerant encoding and decoding scheme, which analyzes all possible errors caused by each quantum gate in an error-correction period.
We then provide the fault-tolerant scheme of the universal quantum gate set, including fault-tolerant preparation and verification of ancillary states.
arXiv Detail & Related papers (2024-03-07T07:46:03Z) - Fault-Tolerant Quantum Memory using Low-Depth Random Circuit Codes [0.24578723416255752]
Low-depth random circuit codes possess many desirable properties for quantum error correction.
We design a fault-tolerant distillation protocol for preparing encoded states of one-dimensional random circuit codes.
We show through numerical simulations that our protocol can correct erasure errors up to an error rate of $2%$.
arXiv Detail & Related papers (2023-11-29T19:00:00Z) - Pauli Manipulation Detection codes and Applications to Quantum Communication over Adversarial Channels [0.08702432681310403]
We introduce and explicitly construct a quantum code we coin a "Pauli Manipulation Detection" code (or PMD), which detects every Pauli error with high probability.
We apply them to construct the first near-optimal codes for two tasks in quantum communication over adversarial channels.
arXiv Detail & Related papers (2023-04-13T05:05:35Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Short Blocklength Wiretap Channel Codes via Deep Learning: Design and
Performance Evaluation [5.203329540700176]
We design short blocklength codes for the Gaussian wiretap channel under information-theoretic security guarantees.
We handle the reliability constraint via an autoencoder, and handle the secrecy constraint with hash functions.
For blocklengths smaller than or equal to 16, we evaluate through simulations the probability of error at the legitimate receiver.
arXiv Detail & Related papers (2022-06-07T17:52:46Z) - Semantic Security with Infinite Dimensional Quantum Eavesdropping
Channel [19.275181096881454]
We propose a new proof method for direct coding theorems for wiretap channels.
The method yields errors that decay exponentially with increasing block lengths.
It provides a guarantee of a quantum version of semantic security.
arXiv Detail & Related papers (2022-05-16T13:25:56Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.