Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders
- URL: http://arxiv.org/abs/2109.12518v1
- Date: Sun, 26 Sep 2021 07:29:54 GMT
- Title: Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders
- Authors: Masahito Hayashi and Kun Wang
- Abstract summary: We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
- Score: 67.12391801199688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate dense coding by imposing various locality restrictions to our
decoder by employing the resource theory of asymmetry framework. In this task,
the sender Alice and the receiver Bob share an entangled state. She encodes the
classical information into it using a symmetric preserving encoder and sends
the encoded state to Bob through a noiseless quantum channel. The decoder is
limited to a measurement to satisfy a certain locality condition on the
bipartite system composed of the receiving system and the preshared
entanglement half. Our contributions are summarized as follows: First, we
derive an achievable transmission rate for this task dependently of conditions
of encoder and decoder. Surprisingly, we show that the obtained rate cannot be
improved even when the decoder is relaxed to local measurements, two-way LOCCs,
separable measurements, or partial transpose positive (PPT) measurements for
the bipartite system. Moreover, depending on the class of allowed measurements
with a locality condition, we relax the class of encoding operations to
super-quantum encoders in the framework of general probability theory (GPT).
That is, when our decoder is restricted to a separable measurement,
theoretically, a positive operation is allowed as an encoding operation.
Surprisingly, even under this type of super-quantum relaxation, the
transmission rate cannot be improved. This fact highlights the universal
validity of our analysis beyond quantum theory.
Related papers
- Breadth-first graph traversal union-find decoder [0.0]
We develop variants of the union-find decoder that simplify its implementation and provide potential decoding speed advantages.
We show how these methods can be adapted to decode non-topological quantum low-density-parity-check codes.
arXiv Detail & Related papers (2024-07-22T18:54:45Z) - Localized statistics decoding: A parallel decoding algorithm for quantum low-density parity-check codes [3.001631679133604]
We introduce localized statistics decoding for arbitrary quantum low-density parity-check codes.
Our decoder is more amenable to implementation on specialized hardware, positioning it as a promising candidate for decoding real-time syndromes from experiments.
arXiv Detail & Related papers (2024-06-26T18:00:09Z) - Zero-entropy encoders and simultaneous decoders in identification via quantum channels [49.126395046088014]
We show that all four combinations (pure/mixed encoder, simultaneous/general decoder) have a double-exponentially growing code size.
We show that the simultaneous identification capacity of a quantum channel equals the simultaneous identification capacity with pure state encodings.
arXiv Detail & Related papers (2024-02-14T11:59:23Z) - Flexible polar encoding for information reconciliation in QKD [2.627883025193776]
Quantum Key Distribution (QKD) enables two parties to establish a common secret key that is information-theoretically secure.
Errors that are generally considered to be due to the adversary's tempering with the quantum channel need to be corrected using classical communication over a public channel.
We show that the reliability sequence can be derived and used to design an encoder independent of the choice of decoder.
arXiv Detail & Related papers (2023-11-30T16:01:10Z) - Fault-Tolerant Quantum Memory using Low-Depth Random Circuit Codes [0.24578723416255752]
Low-depth random circuit codes possess many desirable properties for quantum error correction.
We design a fault-tolerant distillation protocol for preparing encoded states of one-dimensional random circuit codes.
We show through numerical simulations that our protocol can correct erasure errors up to an error rate of $2%$.
arXiv Detail & Related papers (2023-11-29T19:00:00Z) - Think Twice before Driving: Towards Scalable Decoders for End-to-End
Autonomous Driving [74.28510044056706]
Existing methods usually adopt the decoupled encoder-decoder paradigm.
In this work, we aim to alleviate the problem by two principles.
We first predict a coarse-grained future position and action based on the encoder features.
Then, conditioned on the position and action, the future scene is imagined to check the ramification if we drive accordingly.
arXiv Detail & Related papers (2023-05-10T15:22:02Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Conservation laws and quantum error correction: towards a generalised
matching decoder [2.1756081703276]
We explore decoding algorithms for the surface code, a prototypical quantum low-density parity-check code.
The decoder works by exploiting underlying structure that arises due to materialised symmetries among surface-code stabilizer elements.
We propose a systematic way of constructing a minimum-weight perfect-matching decoder for codes with certain characteristic properties.
arXiv Detail & Related papers (2022-07-13T18:00:00Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.