A Survey on Evaluation Metrics for Synthetic Material Micro-Structure
Images from Generative Models
- URL: http://arxiv.org/abs/2211.09727v1
- Date: Thu, 3 Nov 2022 15:17:42 GMT
- Title: A Survey on Evaluation Metrics for Synthetic Material Micro-Structure
Images from Generative Models
- Authors: Devesh Shah (1), Anirudh Suresh (2), Alemayehu Admasu (1), Devesh
Upadhyay (1), Kalyanmoy Deb (2) ((1) Ford Motor Company, (2) Michigan State
University)
- Abstract summary: The evaluation of synthetic micro-structure images is an emerging problem as machine learning and materials science research have evolved together.
In this study we evaluate a variety of methods on scanning electron microscope (SEM) images of graphene-reinforced polyurethane foams.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The evaluation of synthetic micro-structure images is an emerging problem as
machine learning and materials science research have evolved together. Typical
state of the art methods in evaluating synthetic images from generative models
have relied on the Fr\'echet Inception Distance. However, this and other
similar methods, are limited in the materials domain due to both the unique
features that characterize physically accurate micro-structures and limited
dataset sizes. In this study we evaluate a variety of methods on scanning
electron microscope (SEM) images of graphene-reinforced polyurethane foams. The
primary objective of this paper is to report our findings with regards to the
shortcomings of existing methods so as to encourage the machine learning
community to consider enhancements in metrics for assessing quality of
synthetic images in the material science domain.
Related papers
- Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
This paper focuses on the impact of different canonicalization methods, (2) graph creation strategies, and (3) auxiliary tasks, on performance, scalability and symmetry enforcement.
Our findings and insights aim to guide researchers in selecting optimal modeling components for molecular modeling tasks.
arXiv Detail & Related papers (2024-07-11T09:04:12Z) - Multimodal Deep Learning for Scientific Imaging Interpretation [0.0]
This study presents a novel methodology to linguistically emulate and evaluate human-like interactions with Scanning Electron Microscopy (SEM) images.
Our approach distills insights from both textual and visual data harvested from peer-reviewed articles.
Our model (GlassLLaVA) excels in crafting accurate interpretations, identifying key features, and detecting defects in previously unseen SEM images.
arXiv Detail & Related papers (2023-09-21T20:09:22Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - Automatically Predict Material Properties with Microscopic Image Example
Polymer Compatibility [94.40113383292139]
Computer image recognition with machine learning method can make up the defects of artificial judging.
We achieve automatic miscibility recognition utilizing convolution neural network and transfer learning method.
The proposed method can be widely applied to the quantitative characterization of the microstructure and properties of various materials.
arXiv Detail & Related papers (2023-03-22T07:51:32Z) - Parameters, Properties, and Process: Conditional Neural Generation of
Realistic SEM Imagery Towards ML-assisted Advanced Manufacturing [1.5234614694413722]
We build upon prior work by applying conditional generative adversarial networks (GANs) to scanning electron microscope (SEM) imagery.
We generate realistic images conditioned on temper and either experimental parameters or material properties.
This work forms a technical backbone for a fundamentally new approach for understanding manufacturing processes.
arXiv Detail & Related papers (2023-01-13T00:48:39Z) - Application of the YOLOv5 Model for the Detection of Microobjects in the
Marine Environment [101.18253437732933]
The efficiency of using the YOLOV5 machine learning model for solving the problem of automatic de-tection and recognition of micro-objects in the marine environment is studied.
arXiv Detail & Related papers (2022-11-28T10:58:50Z) - Computer Vision Methods for the Microstructural Analysis of Materials:
The State-of-the-art and Future Perspectives [0.4595477728342621]
This review paper focuses on the state-of-the-art CNN-based techniques that have been applied to various multi-scale microstructural image analysis tasks.
We identify the main challenges with regard to the application of these methods to materials science research.
arXiv Detail & Related papers (2022-07-29T15:27:47Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
We show that simple convolutional networks trained on localization classification can learn protein representations that encapsulate diverse functional information.
We also propose a robust evaluation strategy to assess quality of protein representations across different scales of biological function.
arXiv Detail & Related papers (2022-05-24T00:00:07Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Image-driven discriminative and generative machine learning algorithms
for establishing microstructure-processing relationships [0.49259062564301753]
We develop an improved machine learning approach to image recognition, characterization, and building predictive capabilities.
A binary alloy (uranium-molybdenum) that is currently under development as a nuclear fuel was studied.
A F1 score of 95.1% was achieved for distinguishing between micrographs corresponding to ten different thermo-mechanical material processing conditions.
arXiv Detail & Related papers (2020-07-27T10:36:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.